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Software Engineering and Formal Methods

 Every software engineering methodology is based on a 
recommended development process

 proceeding through several phases:

 Requirements, Specification, Design

 Coding, Unit Testing

 Integration and System Testing, Maintenance

 Formal methods can

 Be a foundation for designing safety critical systems

 Be a foundation for describing complex systems

 Provide support for program development
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What are Formal Methods?

 Techniques and tools based on mathematics and formal logic

 Can assume various forms and levels of rigor

 Informal

 Low

 Medium

 High
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Why Consider Formal Methods?

 The development of a formal specification provides insights 

and an understanding of the software requirements and 

software design

 Clarify customers’ requirements

 Reveal and remove ambiguity, inconsistency and 

incompleteness

 Facilitate communication of requirement or design

 Provides a basis for an elegant software design

 Traceability 

 System-level requirements should be traceable to 

subsystems or components
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Formal Methods Concepts

Formal Specification Methods

Formal 

specification

Formal

Proofs

Model 

checking

Abstraction
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Formal Specification

 The translation of non-mathematical description (diagrams, table, 

natural language) into a formal specification language

 It represents a concise description of high-level behavior and 

properties of a system

 Well-defined language semantics support formal deduction about 

the specification
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Type of Formal Specifications

 Model Oriented: Construct a model of the system behavior using 

mathematical objects like sets, sequences etc.

 Statecharts, SCR, VDM, Z

 Petri Nets, CCS, CSP, Automata theoretic models

 Property Oriented: Use a set of necessary properties to describe 

system behavior, such as axioms, rules etc.

 Algebraic semantics

 Temporal logic models.
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Formal Proofs

 Proof is an essential part of specification

 Proofs are constructed as a series of small steps, each of which is 

justified using a small set of rules

 Proofs can be done manually, but usually constructed with some 

automated assistance
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Model Checking

 A technique  relies on building a finite model of a system and 

checking that a desired property holds in that model 

 Two general approaches 

 temporal model checking 

 automaton model  checking

 Use model checkers

 SMV
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Abstraction

 Representation of the program using a smaller model 

 Allows you to focus on the most important central properties and 

characteristics

 Getting the right level of abstraction is very important in a 

specification. 
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Mathematical Models

 Abstract representations of a system using mathematical entities 

and concepts

 Model should captures the essential characteristics of the system 

while ignoring irrelevant details

 Model can be analyzed using mathematical reasoning to prove 

system properties or derive new behaviors.

 Two types

 Continuous models

 Discrete models
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Formal Specification Process Model

 Clarify requirements and high level design

 Articulate implicit assumptions

 Identify undocumented or unexpected assumptions

 Expose defects

 Identify exceptions

 Evaluate test coverage
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Cleanroom software development

 Spend a lot of effort "up-front" to prevent defects

 Formal specification

 Incremental development

 Statistical methods to ensure reliability
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Cleanroom Process

 Formal specification using a state transition model

 Structured programming - limited control and abstraction 

constructs are used

 Program resembles state machine

 Static verification using rigorous inspections

 Mathematical arguments

 Statistical testing of the system reliability 
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Cleanroom Process
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Cleanroom Process

 Incremental development

 Allows freezing of requirements, so formal work can 

proceed

 Work on critical functionality in early revisions, so it receives 

the most testing
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Cleanroom Process

 Specification team.  

 Develop and maintain system specification

 Development team.  

 Develop and verify (mathematically) the software.  

 The software is not executed or even compiled during this 

process

 Certification team.  

 Develop set of statistical tests to exercise the software after 

development. 

 Reliability growth models used to determine when reliability 

is acceptable
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Test Results

 Successful in the field 

 Few errors

 Not more expensive than other processes

 Generally workable

 Higher quality code resulted
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Benefits of Formal Specifications

 Higher level of rigor leads to better problem understanding

 Defects are uncovered that would be missed using traditional 

specification methods

 Allows earlier defect identification

 Formal specification language semantics allow checks for self-

consistency

 Enables the use of formal proofs to establish fundamental system 

properties and invariants
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Limitations to Formal Methods

 Requires a sound mathematical knowledge of the developer 

 Different aspects of a design may be represented by different 

formal specification methods 

 Useful for consistency checks, but formal methods cannot 

guarantee the completeness of a specifications

 For the majority of systems Does not offer significant cost or quality 

advantages over others
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Review
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What We learned …

 Fundamental requirements engineering concepts

 Requirements engineering processes

 Requirements engineering techniques
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Requirements Engineering Concepts

 Requirements – define what a system is required to do and the 
constraints under which it is required to operate

 Requirements engineering – all activities involved in discovering, 
documenting, and maintaining a set of requirements for a computer-
based system

 The term engineering implies that systematic and repeatable 
techniques (based on Best Practices) should be used

 The first step in system development

 Include

 Functional requirements

 Non-functional requirements

 Stakeholders

 Software engineers, system end-users, managers of system 
end-users, external regulators, domain experts 
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Requirements Engineering Processes
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Requirements Engineering Processes

Requirements
elicitation

Requirements
analysis and
negotiation

Requirements
documentation

Requirements
validation

Requirements
document
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existing system
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regulations,
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specification

 IBM Rational RequisitPro for requirements documentation 

and management

 SRS template for final specification
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Requirements Engineering Techniques

 Process of requirements engineering (RE) is usually guided by a 

requirements method 

 Requirement methods are systematic ways of producing system 

models

 System models are important bridges between the analysis and the 

design process

 Types

 Structured analysis

 Object-oriented analysis
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Requirements Engineering Techniques

 Data flow modeling

 One of the most popular structured methods

 DFD provides a description of a system based on modeling

 the transformational processes of a system, 

 the collections (stores) of data that the system manipulates, 

and 

 the flows of data between the processes, stores and the 

outside world.

 The DFD describes the functional viewpoint of the system e.g. it 

describes the system in terms of its operation (tasks).

 Conducted hierarchically.
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Requirements Engineering Techniques

 Object-oriented approach

 integrate data and functions

 Use case diagrams

 Activity diagrams

 Class diagrams

 Sequence diagrams

 Collaboration diagrams

 State diagrams
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 Non-functional requirements

 Define the overall qualities or attributes of the resulting system

 Examples of NFR include safety, security, usability, reliability and 

performance requirements.

 Classification

 Product requirements

 Process requirements

 External requirements

 Derive NFRs

 Concern decomposition

 Goal-based

 Formal methods in requirements engineering

Requirements Engineering Techniques

Dr.Kamal.N, Dept. of CSE, GRTIET



Final Exam

 Dec. 18, 1:00 – 3:00, BH 223

 Open book, open notes, no laptop

 One problem on drawing DFD, context level and level 1

 One problem on drawing class diagram and sequence diagrams

 One problem on non-functional requirements

 One problem on formal methods
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