
SE561 Software System Requirements

Formal Methods

Dr.Kamal.N, Dept. of CSE, GRTIET

Software Engineering and Formal Methods

 Every software engineering methodology is based on a
recommended development process

 proceeding through several phases:

 Requirements, Specification, Design

 Coding, Unit Testing

 Integration and System Testing, Maintenance

 Formal methods can

 Be a foundation for designing safety critical systems

 Be a foundation for describing complex systems

 Provide support for program development

Dr.Kamal.N, Dept. of CSE, GRTIET

What are Formal Methods?

 Techniques and tools based on mathematics and formal logic

 Can assume various forms and levels of rigor

 Informal

 Low

 Medium

 High

Dr.Kamal.N, Dept. of CSE, GRTIET

Why Consider Formal Methods?

 The development of a formal specification provides insights

and an understanding of the software requirements and

software design

 Clarify customers’ requirements

 Reveal and remove ambiguity, inconsistency and

incompleteness

 Facilitate communication of requirement or design

 Provides a basis for an elegant software design

 Traceability

 System-level requirements should be traceable to

subsystems or components

Dr.Kamal.N, Dept. of CSE, GRTIET

Formal Methods Concepts

Formal Specification Methods

Formal

specification

Formal

Proofs

Model

checking

Abstraction

Dr.Kamal.N, Dept. of CSE, GRTIET

Formal Specification

 The translation of non-mathematical description (diagrams, table,

natural language) into a formal specification language

 It represents a concise description of high-level behavior and

properties of a system

 Well-defined language semantics support formal deduction about

the specification

Dr.Kamal.N, Dept. of CSE, GRTIET

Type of Formal Specifications

 Model Oriented: Construct a model of the system behavior using

mathematical objects like sets, sequences etc.

 Statecharts, SCR, VDM, Z

 Petri Nets, CCS, CSP, Automata theoretic models

 Property Oriented: Use a set of necessary properties to describe

system behavior, such as axioms, rules etc.

 Algebraic semantics

 Temporal logic models.

Dr.Kamal.N, Dept. of CSE, GRTIET

Formal Proofs

 Proof is an essential part of specification

 Proofs are constructed as a series of small steps, each of which is

justified using a small set of rules

 Proofs can be done manually, but usually constructed with some

automated assistance

Dr.Kamal.N, Dept. of CSE, GRTIET

Model Checking

 A technique relies on building a finite model of a system and

checking that a desired property holds in that model

 Two general approaches

 temporal model checking

 automaton model checking

 Use model checkers

 SMV

Dr.Kamal.N, Dept. of CSE, GRTIET

Abstraction

 Representation of the program using a smaller model

 Allows you to focus on the most important central properties and

characteristics

 Getting the right level of abstraction is very important in a

specification.

Dr.Kamal.N, Dept. of CSE, GRTIET

Mathematical Models

 Abstract representations of a system using mathematical entities

and concepts

 Model should captures the essential characteristics of the system

while ignoring irrelevant details

 Model can be analyzed using mathematical reasoning to prove

system properties or derive new behaviors.

 Two types

 Continuous models

 Discrete models

Dr.Kamal.N, Dept. of CSE, GRTIET

Formal Specification Process Model

 Clarify requirements and high level design

 Articulate implicit assumptions

 Identify undocumented or unexpected assumptions

 Expose defects

 Identify exceptions

 Evaluate test coverage

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom software development

 Spend a lot of effort "up-front" to prevent defects

 Formal specification

 Incremental development

 Statistical methods to ensure reliability

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom Process

 Formal specification using a state transition model

 Structured programming - limited control and abstraction

constructs are used

 Program resembles state machine

 Static verification using rigorous inspections

 Mathematical arguments

 Statistical testing of the system reliability

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom Process

Construct
structured
program

Define
software

increments

Formally
verify
code

Integrate
increment

Formally
specify
system

Develop
operational

profile
Design

statistical
tests

Test
integrated

system

Error rework

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom Process

 Incremental development

 Allows freezing of requirements, so formal work can

proceed

 Work on critical functionality in early revisions, so it receives

the most testing

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom Process

 Specification team.

 Develop and maintain system specification

 Development team.

 Develop and verify (mathematically) the software.

 The software is not executed or even compiled during this

process

 Certification team.

 Develop set of statistical tests to exercise the software after

development.

 Reliability growth models used to determine when reliability

is acceptable

Dr.Kamal.N, Dept. of CSE, GRTIET

Test Results

 Successful in the field

 Few errors

 Not more expensive than other processes

 Generally workable

 Higher quality code resulted

Dr.Kamal.N, Dept. of CSE, GRTIET

Benefits of Formal Specifications

 Higher level of rigor leads to better problem understanding

 Defects are uncovered that would be missed using traditional

specification methods

 Allows earlier defect identification

 Formal specification language semantics allow checks for self-

consistency

 Enables the use of formal proofs to establish fundamental system

properties and invariants

Dr.Kamal.N, Dept. of CSE, GRTIET

Limitations to Formal Methods

 Requires a sound mathematical knowledge of the developer

 Different aspects of a design may be represented by different

formal specification methods

 Useful for consistency checks, but formal methods cannot

guarantee the completeness of a specifications

 For the majority of systems Does not offer significant cost or quality

advantages over others

Dr.Kamal.N, Dept. of CSE, GRTIET

Review

Dr.Kamal.N, Dept. of CSE, GRTIET

What We learned …

 Fundamental requirements engineering concepts

 Requirements engineering processes

 Requirements engineering techniques

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Concepts

 Requirements – define what a system is required to do and the
constraints under which it is required to operate

 Requirements engineering – all activities involved in discovering,
documenting, and maintaining a set of requirements for a computer-
based system

 The term engineering implies that systematic and repeatable
techniques (based on Best Practices) should be used

 The first step in system development

 Include

 Functional requirements

 Non-functional requirements

 Stakeholders

 Software engineers, system end-users, managers of system
end-users, external regulators, domain experts

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Processes

Agreed
requirements

System
specification

System
models

Requirements
engineering process

Stakeholder
needs

Organisational
standards

Domain
information

Regulations

Existing
systems

information

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Processes

Requirements
elicitation

Requirements
analysis and
negotiation

Requirements
documentation

Requirements
validation

Requirements
document

User needs
domain

information,
existing system

information,
regulations,

standards, etc.

Agreed
requirementsSystem

specification

 IBM Rational RequisitPro for requirements documentation

and management

 SRS template for final specification

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Techniques

 Process of requirements engineering (RE) is usually guided by a

requirements method

 Requirement methods are systematic ways of producing system

models

 System models are important bridges between the analysis and the

design process

 Types

 Structured analysis

 Object-oriented analysis

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Techniques

 Data flow modeling

 One of the most popular structured methods

 DFD provides a description of a system based on modeling

 the transformational processes of a system,

 the collections (stores) of data that the system manipulates,

and

 the flows of data between the processes, stores and the

outside world.

 The DFD describes the functional viewpoint of the system e.g. it

describes the system in terms of its operation (tasks).

 Conducted hierarchically.

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Techniques

 Object-oriented approach

 integrate data and functions

 Use case diagrams

 Activity diagrams

 Class diagrams

 Sequence diagrams

 Collaboration diagrams

 State diagrams

Dr.Kamal.N, Dept. of CSE, GRTIET

 Non-functional requirements

 Define the overall qualities or attributes of the resulting system

 Examples of NFR include safety, security, usability, reliability and

performance requirements.

 Classification

 Product requirements

 Process requirements

 External requirements

 Derive NFRs

 Concern decomposition

 Goal-based

 Formal methods in requirements engineering

Requirements Engineering Techniques

Dr.Kamal.N, Dept. of CSE, GRTIET

Final Exam

 Dec. 18, 1:00 – 3:00, BH 223

 Open book, open notes, no laptop

 One problem on drawing DFD, context level and level 1

 One problem on drawing class diagram and sequence diagrams

 One problem on non-functional requirements

 One problem on formal methods

Dr.Kamal.N, Dept. of CSE, GRTIET

