
SE561 Software System Requirements

Formal Methods

Dr.Kamal.N, Dept. of CSE, GRTIET

Software Engineering and Formal Methods

 Every software engineering methodology is based on a
recommended development process

 proceeding through several phases:

 Requirements, Specification, Design

 Coding, Unit Testing

 Integration and System Testing, Maintenance

 Formal methods can

 Be a foundation for designing safety critical systems

 Be a foundation for describing complex systems

 Provide support for program development

Dr.Kamal.N, Dept. of CSE, GRTIET

What are Formal Methods?

 Techniques and tools based on mathematics and formal logic

 Can assume various forms and levels of rigor

 Informal

 Low

 Medium

 High

Dr.Kamal.N, Dept. of CSE, GRTIET

Why Consider Formal Methods?

 The development of a formal specification provides insights

and an understanding of the software requirements and

software design

 Clarify customers’ requirements

 Reveal and remove ambiguity, inconsistency and

incompleteness

 Facilitate communication of requirement or design

 Provides a basis for an elegant software design

 Traceability

 System-level requirements should be traceable to

subsystems or components

Dr.Kamal.N, Dept. of CSE, GRTIET

Formal Methods Concepts

Formal Specification Methods

Formal

specification

Formal

Proofs

Model

checking

Abstraction

Dr.Kamal.N, Dept. of CSE, GRTIET

Formal Specification

 The translation of non-mathematical description (diagrams, table,

natural language) into a formal specification language

 It represents a concise description of high-level behavior and

properties of a system

 Well-defined language semantics support formal deduction about

the specification

Dr.Kamal.N, Dept. of CSE, GRTIET

Type of Formal Specifications

 Model Oriented: Construct a model of the system behavior using

mathematical objects like sets, sequences etc.

 Statecharts, SCR, VDM, Z

 Petri Nets, CCS, CSP, Automata theoretic models

 Property Oriented: Use a set of necessary properties to describe

system behavior, such as axioms, rules etc.

 Algebraic semantics

 Temporal logic models.

Dr.Kamal.N, Dept. of CSE, GRTIET

Formal Proofs

 Proof is an essential part of specification

 Proofs are constructed as a series of small steps, each of which is

justified using a small set of rules

 Proofs can be done manually, but usually constructed with some

automated assistance

Dr.Kamal.N, Dept. of CSE, GRTIET

Model Checking

 A technique relies on building a finite model of a system and

checking that a desired property holds in that model

 Two general approaches

 temporal model checking

 automaton model checking

 Use model checkers

 SMV

Dr.Kamal.N, Dept. of CSE, GRTIET

Abstraction

 Representation of the program using a smaller model

 Allows you to focus on the most important central properties and

characteristics

 Getting the right level of abstraction is very important in a

specification.

Dr.Kamal.N, Dept. of CSE, GRTIET

Mathematical Models

 Abstract representations of a system using mathematical entities

and concepts

 Model should captures the essential characteristics of the system

while ignoring irrelevant details

 Model can be analyzed using mathematical reasoning to prove

system properties or derive new behaviors.

 Two types

 Continuous models

 Discrete models

Dr.Kamal.N, Dept. of CSE, GRTIET

Formal Specification Process Model

 Clarify requirements and high level design

 Articulate implicit assumptions

 Identify undocumented or unexpected assumptions

 Expose defects

 Identify exceptions

 Evaluate test coverage

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom software development

 Spend a lot of effort "up-front" to prevent defects

 Formal specification

 Incremental development

 Statistical methods to ensure reliability

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom Process

 Formal specification using a state transition model

 Structured programming - limited control and abstraction

constructs are used

 Program resembles state machine

 Static verification using rigorous inspections

 Mathematical arguments

 Statistical testing of the system reliability

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom Process

Construct
structured
program

Define
software

increments

Formally
verify
code

Integrate
increment

Formally
specify
system

Develop
operational

profile
Design

statistical
tests

Test
integrated

system

Error rework

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom Process

 Incremental development

 Allows freezing of requirements, so formal work can

proceed

 Work on critical functionality in early revisions, so it receives

the most testing

Dr.Kamal.N, Dept. of CSE, GRTIET

Cleanroom Process

 Specification team.

 Develop and maintain system specification

 Development team.

 Develop and verify (mathematically) the software.

 The software is not executed or even compiled during this

process

 Certification team.

 Develop set of statistical tests to exercise the software after

development.

 Reliability growth models used to determine when reliability

is acceptable

Dr.Kamal.N, Dept. of CSE, GRTIET

Test Results

 Successful in the field

 Few errors

 Not more expensive than other processes

 Generally workable

 Higher quality code resulted

Dr.Kamal.N, Dept. of CSE, GRTIET

Benefits of Formal Specifications

 Higher level of rigor leads to better problem understanding

 Defects are uncovered that would be missed using traditional

specification methods

 Allows earlier defect identification

 Formal specification language semantics allow checks for self-

consistency

 Enables the use of formal proofs to establish fundamental system

properties and invariants

Dr.Kamal.N, Dept. of CSE, GRTIET

Limitations to Formal Methods

 Requires a sound mathematical knowledge of the developer

 Different aspects of a design may be represented by different

formal specification methods

 Useful for consistency checks, but formal methods cannot

guarantee the completeness of a specifications

 For the majority of systems Does not offer significant cost or quality

advantages over others

Dr.Kamal.N, Dept. of CSE, GRTIET

Review

Dr.Kamal.N, Dept. of CSE, GRTIET

What We learned …

 Fundamental requirements engineering concepts

 Requirements engineering processes

 Requirements engineering techniques

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Concepts

 Requirements – define what a system is required to do and the
constraints under which it is required to operate

 Requirements engineering – all activities involved in discovering,
documenting, and maintaining a set of requirements for a computer-
based system

 The term engineering implies that systematic and repeatable
techniques (based on Best Practices) should be used

 The first step in system development

 Include

 Functional requirements

 Non-functional requirements

 Stakeholders

 Software engineers, system end-users, managers of system
end-users, external regulators, domain experts

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Processes

Agreed
requirements

System
specification

System
models

Requirements
engineering process

Stakeholder
needs

Organisational
standards

Domain
information

Regulations

Existing
systems

information

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Processes

Requirements
elicitation

Requirements
analysis and
negotiation

Requirements
documentation

Requirements
validation

Requirements
document

User needs
domain

information,
existing system

information,
regulations,

standards, etc.

Agreed
requirementsSystem

specification

 IBM Rational RequisitPro for requirements documentation

and management

 SRS template for final specification

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Techniques

 Process of requirements engineering (RE) is usually guided by a

requirements method

 Requirement methods are systematic ways of producing system

models

 System models are important bridges between the analysis and the

design process

 Types

 Structured analysis

 Object-oriented analysis

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Techniques

 Data flow modeling

 One of the most popular structured methods

 DFD provides a description of a system based on modeling

 the transformational processes of a system,

 the collections (stores) of data that the system manipulates,

and

 the flows of data between the processes, stores and the

outside world.

 The DFD describes the functional viewpoint of the system e.g. it

describes the system in terms of its operation (tasks).

 Conducted hierarchically.

Dr.Kamal.N, Dept. of CSE, GRTIET

Requirements Engineering Techniques

 Object-oriented approach

 integrate data and functions

 Use case diagrams

 Activity diagrams

 Class diagrams

 Sequence diagrams

 Collaboration diagrams

 State diagrams

Dr.Kamal.N, Dept. of CSE, GRTIET

 Non-functional requirements

 Define the overall qualities or attributes of the resulting system

 Examples of NFR include safety, security, usability, reliability and

performance requirements.

 Classification

 Product requirements

 Process requirements

 External requirements

 Derive NFRs

 Concern decomposition

 Goal-based

 Formal methods in requirements engineering

Requirements Engineering Techniques

Dr.Kamal.N, Dept. of CSE, GRTIET

Final Exam

 Dec. 18, 1:00 – 3:00, BH 223

 Open book, open notes, no laptop

 One problem on drawing DFD, context level and level 1

 One problem on drawing class diagram and sequence diagrams

 One problem on non-functional requirements

 One problem on formal methods

Dr.Kamal.N, Dept. of CSE, GRTIET

