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Unit I
Introduction



Electromagnetism
• Electricity and magnetism are different facets of 

electromagnetism

– a moving electric charge produces magnetic fields

– changing magnetic fields move electric charges

• This connection first elucidated by Faraday, Maxwell

• Einstein saw electricity and magnetism as frame-

dependent facets of unified electromagnetic force



Magnetic fields from electricity

• A static distribution of charges produces an electric 

field

• Charges in motion (an electrical current) produce a 

magnetic field

– electric current is an example of charges (electrons) in motion



Electromagnets
• Arranging wire in a coil and running a current 

through produces a magnetic field that looks a lot 

like a bar magnet

– called an electromagnet

– putting a real magnet inside, can shove the magnet back 

and forth depending on current direction: called a 

solenoid



Electromagnetic Radiation

• Interrelated electric and magnetic fields traveling through space

• All electromagnetic radiation travels at c =  3108 m/s in 

vacuum – the cosmic speed limit!

– real number is 299792458.0 m/s exactly



Examples of Electromagnetic Radiation

• AM and FM radio waves (including TV signals)

• Cell phone communication links

• Microwaves

• Infrared radiation

• Light 

• X-rays

• Gamma rays

• What distinguishes these from one another?



Rectangular Coordinate System



Cylindrical Coordinate System



Spherical Coordinate  System









1). Vector Operators and Analysis
 Div, Grad, Curl (and all that)

 Del or nabla operator

 In Cartesian coordinates

 Combining vectors in 3 ways

 Scalar (inner) product  a.b = c (scalar)

 Cross (vector) product  axb = c (vector)

 Outer product (dyad)   ab = c (tensor)
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Scalar Product - Divergence
 r is a Cartesian position vector r=(x,y,z)

 A is vector function of position r

 Div A =

 Scalar product of del with A

 Scalar function of position

z

A

y

A

x

A
. zyx




+




+




= A

( )zyx A,A,A)( =rA



Cross Product - Curl
 Curl A =

 Cross product of del with A

 Vector function of position
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Gradient
 f(x,y,z) is a scalar function of position

 Grad f = f = 

 Operation of del on scalar function

 Vector function of position
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Divergence Theorem

 Tangent dr = i dx + j dy

 Outward normal  n ds = i dy – j dx

 n unit vector along outward normal

 ds = (dx2+dy2)1/2

 P(x,y) = -Vy Q(x,y) = Vx

Cartesian components of the same vector field V

 Pdx + Qdy = -Vydx + Vxdy

 (i Vx + j Vy).(i dy – j dx) = -Vy dx + Vx dy = V.n ds
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Divergence Theorem 2-D 3-D
 Apply Green’s Theorem

 In words - Integral of V.n ds over surface contour equals 
integral of div V over surface area

 In 3-D 

 Integral of V.n dS over bounding surface S equals integral of 
div V dv within volume enclosed by surface S
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Curl and Stokes’ Theorem
 For divergence theorem P(x,y) = -Vy Q(x,y) = Vx

 Instead choose P(x,y) = Vx Q(x,y) = Vy

 Pdx + Qdy = Vx dx + Vy dy

 V = i Vx + j Vy + 0 k
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Stokes’ Theorem 3-D
 In words - Integral of ( x V) .n dS over surface S equals 

integral of V.dr over bounding contour C

 It doesn’t matter which surface (blue or hatched). Direction of 
dr determined by right hand rule.
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Stroke’s Theorem



Unit II
ELECTROSTATICS



Introduction
Electrostatics can be defined as the study of electric charges at rest. Electric  
fields have their sources in electric charges.
( Note: Almost all real electric fields vary to some extent with time. However,  
for many problems, the field variation is slow and the field may be  
considered as static. For some other cases spatial distribution is nearly same  
as for the static case even though the actual field may vary with time. Such  
cases are termed as quasi-static.)
In this chapter we first study two fundamental laws governing the  
electrostatic fields, viz, (1) Coulomb's Law and (2) Gauss's Law. Both these  
law have experimental basis. Coulomb's law is applicable in finding electric  
field due to any charge distribution, Gauss's law is easier to use when the  
distribution is symmetrical.



Coulomb's Law
•

•

Coulomb determined

– Force is attractive if charges are opposite sign

–Force proportional to the product of the charges q1

and q2 along the lines joing them

–Force inversly proportional square of the distance  

I.e.
– |F12|  |Q1| |Q2| / r122

– or
– |F12|= k |Q1| |Q2| / r122



Coulomb's Law
•

•

Units of constant can be determined from Coulomb's  

Law

Colomb (and others since) have determined this  

constant which (in a vacuum) in SI units is

– k = 8.987.5x109 Nm2C-2

• k is normally expressed as k = 1/40

– where is the permittivity of free space



Coulomb's Law



Vector form of Coulomb’s
Law

Q1

Q2r
12

F21

F12

F12

r̂ 12

+

+

F21

+ -



• Always attractive

• 1/r2

• very weak

• important on very  
large scales, planets,  
the Universe

Coulomb’s Law
vs Newton’s Law of Gravity

12
|2 12

|r
F12 = −G m1m2 r̂

• Attractive or repulsive

• 1/r2

• very strong

• only relevant  

relatively local scales

1212 |2
1 Q1Q2 r̂

40 |r12

F =

 −Gm2

40

e2

Two spheres



Electric Field
Physicists did not like the concept of  

“action at a distance” i.e. a force that  

was “caused” by an object a long  

distance away

They preferred to think  

of an object producing  

a “field” and other  

objects interacting with  

that fieldThus rather than ...

+

- they liked to think...

+

-



Electric Field

1 Q
r̂

0
4 | r|2

E =

E =
F Thus Electric Field  

from a single  

charge is

Q

r

Q0

r̂

Electric Field E is defined as the force

acting on a test particle divided by the

charge of that test particle
F

E

+Q0



Electric Field of a single charge

+

r

+Q0

+Q0

E
+Q0

Note: the Electric Field is defined  

everywhere, even if there is no test  

charge is not there.

+Q0

Electric field  

from test  

particles

Electric Field  

from isolated  

charges  

(interactive)



E
F = QE

F = QE

+Q

-Q

Charged particles in electric
field

Using the Field to determine the force



Electric Field as a vector
field

The Electric Field is one example  

of a Vector Field

A “field” (vector or scalar) is defined  

everywhere

A vector field has direction as well as size

The Electric Field has units of N/C



Representation of the
Electric  Field

It would be difficult to represent the electric field by  

drawing vectors whose direction was the direction of the  

field and whose length was the size of the field  

everywhere



Representation of the
Electric  Field

Instead we choose to represent the electric field with  

lines whose direction indicates the direction of the field

Notice that as we  

move away from the  

charge, the density of  

lines decreases

These are called  

Electric Field Lines



Drawing Electric Field Lines

• The lines must begin on positive charges (or  
infinity)

• The lines must end on negative charges (or  
infinity)

• The number of lines leaving a +ve charge  
(or approaching a -ve charge) is  
proportional to the magnitude of the charge

• electric field lines cannot cross



Field is zero at midpoint

Field is not zero here

Electric Field Lines



Field lines for a conductor



Drawing Electric Field
Lines:  Examples

From Electric field  

vectors to field lines

Field lines  

from all angles

Field lines  

representation



Electric Field
Lines

A
  NlinesDefine

 = N

4r2

Q

4r2
 

Nlines  Qsince

1 Q

40 | r |2
| E|=

we know

The number density of field lines is

| E |



A

Electric Flux:
Field Perpendicular

 =| E |A

For a constant field perpendicular to a surfaceA

Electric Flux is

defined as

E



Electric Flux:
Non
perpendicular

For a constant field

NOT perpendicular

to a surfaceA

Electric Flux is  

defined as

 =| E |AcosA

E





Electric Flux:  Relation to 
field lines

 =| E | A

 | E|

A| E | A

Number of flux lines N  

A

E

Field line

density

Field line density

×Area

FLUX



Gauss’s
Law

Relates flux through a closed surface  

to

charge within that surface



Flux through a sphere 
from a  point charge

1 Q

40 | r1|
2

| E|=

1

0 1
4 | r |2

 4 | r |2 =
1 Q

0

 = Q

r
1

The electric field  

around a point charge

Thus the  

flux on a  

sphere is E

×Area

AreaE

Cancelling  

we get



Now we change the  
radius of sphere

1 Q

40 | r2 |2
| E|=

2

| 4 |r |2
0 2

2 =  4 | r2

1 Q

0

2


 = Q

r2

2 1
0

 =  = Q

Flux through a sphere froma

point charge

40 | r1 |
2

|E |=
1 Q

1

0 1
4 | r |2

 =
1 Q

 4 | r |2

 = Q

0

r1

The electric field  

around a point charge

Thus the  

flux on a  

sphere isE

× Area

E Area

Cancelling  

we get

The flux is  

the same  

as before



Flux lines & Flux

N     N

and number of lines passing  

through each sphere is the same

1

In fact the number of flux  

lines passing through any  

surface surrounding this  

charge is the same
even when a line  

passes in and out  

of the surface it  

crosses out once  

more than in

2

out
ins out

0

S 2 1 =  =  =
Q

Just what we would expect because the  

number of field lines passing through each  

sphere is the same



What is Gauss’s
Law?

Gauss’s Law does not tell us anything new,

it is NOT a new law of physics, but another

way of expressing Coulomb’s Law

Gauss’s Law is sometimes easier to use than

Coulomb’s Law, especially if there is lots of

symmetry in the problem



r2

Q

0

 = Q

Example of using Gauss’s Law 1

oh no! I’ve just forgotten Coulomb’s Law!

Not to worry I remember Gauss’s Law

By symmetry E is ⊥ to surface

consider spherical surface  

centred on charge

 =| E | A = Q

0

=| E | 4r 2  = Q

0

r2

0 0

=
4

1 Q 1 Q
| E |= 4r 2 

0

1 qQ

4r 2 
F =F=qE

q

Phew!

Using the Symmetry



Example of using Gauss’s 
Law 2

What’s the field around a charged
spherical  shell?

Q

0
= Q

out

Again consider spherical  

surface centred on  

charged shell

0

1 Q

4 r 2
| E |=

E = 0

Outside

out
in

So as e.g. 1

in = 0

Inside
charge within surface = 0



Properties of
Conductors

is smaller

For a conductor in electrostatic equilibrium

1.E is zero within the conductor

2.Any net charge, Q, is distributed on surface  

(surface charge density =Q/A)

3. E immediately outside is ⊥ to surface

 is greatest where the radius of curvature

1 2 1  21



1. E is zero within
conductor

If there is a field in the conductor, then the  

free electrons would feel a force and be  

accelerated. They would then move and  

since there are charges moving the  

conductor would not be in electrostatic  

equilibrium

Thus E=0



2. Any net charge, Q, is  
distributed on surface

qi

As surface can be drawn  

arbitrarily close to surface of  

conductor, all net charge must  

be distributed on surface

Consider surface S below surface of conductor

Since we are in a conductor in  

equilibrium, rule 1 says E=0, thus =0

 = EA = q /0Gauss’s Law

qi  / 0 =0thus
So, net charge within

the surface is zero



3. E immediately outside is 
⊥ to  surface

Consider a small cylindrical surface at the surface  

of the conductor

 = EA =q / Gauss’s Law

cylinder is small enough that E is constant

E⊥

E||

If E|| >0 it would cause surface charge q to move thus  

it would not be in electrostatic equilibrium, thus E ||=0

thus E = q /A

E⊥ =  /



➢

➢

➢

➢

Electric Field inside a dielectric
M➢ aterial
Dielectric- Conductor And
D➢ielectric – Dielectric Boundary
Conditions
Capacitance
Current Density  
Ohm's Law

Equation of Continuity



positive charge +Q(nucleus) as in Figure

Electric Field inside Diectric
medium



tphoesiftoivrceeFc+h=arQgEewhilethe nisegatdiivseplcahcaedrgeiitss

displaced in the opposite directionfromby the
force F_=-QE

A dipole results from the displacement of the
charges and the dielectric is said to be
polarized.➢

➢



The major effect of the electric field E on a
dielectric is the creation of dipole moments that
align themselves in the direction of E.









The total positive bound charge on surface S
bounding the dielectric is

while the charge that remains inside S is



Thus the total charge of the dielectric material  
remains zero, that is,

Total charge =

We now consider the case in which the dielectric
region contains free charge. If p is the free

v

charge volume density, the total volume charge  
density p, is given by



We would expect that the polarization P would
vary directly as the applied electric field E. For
some dielectrics, this is usually the case and we
have



DIELECTRIC CONSTANT AND
STRENGTH



ε is called the permittivity of the dielectric, ε is
o

the permittivity of free space, as approximately
10-9/36π F/m, and ε is called the dielectric

r

constant or relative permittivity.

The dielectric strength is the maximum electric  
field that a  dielectric can tolerate or
withstand without breakdown.

A dielectric material is linear if ε does not  
change with applied E field. homogeneous if ε  
does not change from point to point, and  
isotropic if ε does not change with direction.





BOUNDARY CONDITIONS
Dielectric-Dielectric Boundary Conditions

Consider the E field existing in a region consisting  
of two different dielectrics characterized by ε

l

=ε ε and ε =ε ε as shown in Figure.E and E in
0 r1 2 0 r2 1 2

media 1 and 2, respectively, can be decomposed  
as













Conductor-Dielectric
Boundary
Conditions









Capacitance





Parallel-Plate Capacitor









Coaxial Capacitor





Spherical
Capacitor











Current And Current
Density





Continuity of Current





Resistance & Ohm's Law









Unit III
MAGNETOSTATICS



Force on a Charged Particle
The electric force Fe on a stationary or moving  
electric charge Q in an electric field is given by  
Coulomb's experimental law and is related to  
the electric field intensity E as

Fe=QE

This shows that if  F Q is positive, F and E have the  
same direction.



A magnetic field can exert force only on a  
moving charge.

From experiments, it is found that the magnetic  
force Fm experienced by a charge Q moving  
with a  velocity u in a  magnetic field B is

Fm =Qu X B

F is perpendicular to both u and B.
m



For a moving charge Q in the presence of both
electric and magnetic fields, the total force on
the charge is given by

F = Fe +Fm

Or

F = Q(E + u XB)

This equation is known as Lorentz Force  
equation.

Lorentz Force equation



It relates mechanical force to electrical force.

If the mass of the charged particle moving in E  
and B  fields is m, by Newton's second law of  
motion.

dt

The solution to this equation is important in  
determining the motion of charged particles in  
E and B fields.

F =m du =Q E uX B



Force on a Current Element
To determine the force on a current element I dl  
of a current-carrying conductor due to the  
magnetic field B

J =vu

We know that

I dl=K dS = J dv

Then
I dl=udv=dQ u



Hence

I dl=dQ u

The force acting on an elemental charge dQ  
moving with velocity u is equivalent to a  
conduction current element I dl in a magnetic  
field B.

dF = I dl X B

If the current is through a closed path Lor  
circuit, the force on circuit is given by

F =∮ I dl XB



The magnetic field produced by the current  
element I dl does not exert force on the element  
itself just as a point charge does not exert force  
on itself.

The B field that exerts force on I dl l must be due  
to another element.

If instead of the line current element I dll, we  
have surface current elements K dS or a volume  
current element J          dv, Then

dF= K dS X B Or dF =J dv XB



Then

and

F =∮ K dSX B

F =∮ J dv XB



● Ampere'scircuit law states that the line
integral of the tangential component of H
around a dosed path is the same as the net
current I .IK. enclosed by the path.

enc

Ampere' Circuital Law







Ampere's Circuital Law
 integral of the tangential component of H

 around a closed path is the same as the net  

current I enclosed by the path.
 enc

Ampere's circuit law states that the line





FORCES DUE TOMAGNETIC  
FIELDS

➢ There are at least three ways in which force  
due to magnetic fields can be experienced.

1.Due to a moving charged particle in a B  
field.

2.On a current element in an external B field.

3. Between two current elements.



Force between Two Current
Elements

Let us now consider the force between two  
elements I dl and I dl .

1 1 2 2

According to Biot-Savart's law, both current  
elements produce magnetic fields.

So we may find the force d(dF ) on element I
1 1

dl due to the field dB2 produced by elementI
1 2

dl
2

d dF1 =I1 dl1 X dB2



From Biot-Savart's law

2dB

=

0I 2 dI 2 X aR
21

4 R21

2

d dF 1 = 21
0 I 1 dI 1 X I 2 dI 2 X aR

4 R21

2

F1=
4

0 I 1 I 2 ∯dI1 X dI 2 XaR
21

21
R2





MAGNETIC TORQUE AND  
MOMENT

The torque T (or mechanical moincnl of force)
on ihe loop is the vector product of the force F
and the moment arm r.

That is T =r XF



Consider a rectangular loop of length l and  
width w placed in a uniform magnetic field B as  
shown in Figure



Or

Thus F = Bil. Thus no force is exerted on the  
loop as a whole. However Fo and -Fo act at  
different points on the loop, there by creating  
a couple.

3 1

F= I ∫2l dl X B I ∫ d4 l X
l

B

F = I ∫dz az X B I ∫dz  az X B
0 0

F=F 0− F 0=0



The torque on the loop is

∣T ∣= ∣F 0∣w
sinOr T=BIlw sin

But lw = S, the area of the loop

T =BIS sin

We define the quantity

m=IS an

m is defined as the magnetic dipole moment.  

Units are A/m2.



Magnetic Dipole Moment

The magnetic dipole moment is the product  
of current and area of the loop.

Its direction is normal to the loop.

Torque on a magnetic loop placed in Magnetic  
field is

T = m X  B

This is applicable only when the magnetic field  
is uniform in nature.



Field due to a Magnetic Dipole

●

A Bar magnet or a small
f●ilamentary current loop is usually
referred to as a magnetic dipole.

Consider a current carrying loop

carrying a current of I amps, the  

the magnetic field due this at any  

arbitrary point P(r,θ,φ) due the  

loop is calculated as follows.



The magnetic Vector Potential at P is

0I ∮ dl
A

=
4 r

A

=

0I a 2 sin a

4 r2

or

A

=

0m X ar

4 r2



The magnetic Flux density B is determined as

B= ∇ X A

Therefore

0m

4 r3 rB= 2cos a sin a



Force Experienced
square  

loop

A rectangular  
loop carrying
current I is

2

placed parallel  
to an infinitely
long  
filamentary
wire carrying
current I as

1

shown in Figure



The force acting on loop is

Fl =F 1 F 2 F 3 F
4 F l= I 2∮dI 2 X

B

where F , F , F , and F
1 2 3 4

are respectively, the  
forces exerted on sides  
of the loop labeled 1,  
2, 3, and 4 in Figure



Due to the infinitely long wire

1B =
0I1

2 0

a

Then
F 1= I 2∮ dI 2 X B1

1F =
I

2∮
z=
0

b

zdz a X
I0 1

2 0

a

1F = −
0I1 I 2 b

2 0

a (Attractive)



z=
0

Fb3= I 2∮dI 2 X B1

3 2 z
F = I ∮ dz a X 0 I 1

02 a
a

3F

=

0I 1 I2 b

02 a
a (Repulsive)

2F

=

I I1 2

2
ln

0a

0

az

2 2

0a

F =I ∮ d a
= 0

I

02 a
X 0 1 a

(Parallel)



4F =
I

2

0

∮
= 0a

d a
I

02 a
X 0 1 a

4F

=

− I I1 2

2
ln

0a

0

az
(Parallel)

The Total Force

lF =
1 2I I b

0 02 a
[1 − 1 ] − a



Magnetization in Materials
➢

➢

➢ A  medium for which M is not zero everywhere  
is said to be magnetized.

M =
lim

v 0

N

The magnetization M (in amperes/meter) is  
the magnetic dipole moment per unit volume.

If there are N atoms in a given volume Δv and  
the kth   atom has a magnetic moment m .

K

∑ mk

k=1

v



dA

=

dv1

dA

=

0M X aR

4 R2

0M X R

4 R3
dv1

R3

R
= ∇ 1 1

R

Hence

A= 0

4
∫ M X ∇ 1

R

1
dv1



But

M X ∇ 1 1 = 1 ∇ 1 X M − ∇ 1  X M

R R R

Substituting the above equation in A

R
A= 0 ∫  ∇

1 X M
dv1− 0

4 4 R
∫ ∇ 1 X

M
dv1

Applying the Vector Identity

∫ ∇ X F dv 1= − ∫ F X dS
1

v1 S1



A

=

0 ∫
v1

∇ 1 X M
dv1

S1

0 ∮ M X an dS1

dS1

A

=
4

v1

J

S1

b

R 4 R

40

4
0 ∫

A= ∫
v1 R

dv1 dS1

dv1∇ 1 RXM 40 ∮
4 K0 ∮ b S 1

M RXan

R

Comparing the equations

J b= ∇ X M  

Kb=M X an

J. is the bound volume current density
b

or magnetizing volume current density.

K. is the bound surface current density.
b



In free Space

∇ X H= J f Or ∇ X
B

0

= J
f

J is the free current volume density
f

In a  medium where M is not equal to zero, then

∇ X B =J f J b= J = ∇ X B ∇ X M
0

or
0B= H M

For linear materials, M depends linearly on H  
such that

M =mH



m is called Magnetic susceptibility of  
the medium.

B= 0 1 m H

B= 0 rH

Where

r=1 m=
0

is called as the permeability of the material

r is called as the relative permeability of the  
material



➢

➢

Scalar and Vector
Magnetic

➢

➢Potentials

➢Vector Potentials due to simple

configurations Self and Mutual

Inductances  

Determination of  

inductance Energy



Magnetic Potential
➢

➢

we can define a potential associated with  
magnetostatic field B.

The magnetic potential could be scalar or  
vector



Scalar Magnetic Potential
➢ We define the magnetic scalar potential Vm.

Thus the magnetic scalar potential V is only
m

defined in a  region where J          = 0



Vector Magnetic Potential





Proof

● We Know that











Vector Poisson's Equations

We Know that





This equation is called vector Poisson's equation.  
In Cartesian form these can be written as





Flux Linkages
➢

➢

➢

A circuit (or closed conducting path) carrying  
current /produces a magnetic field B which  
causes a  flux ψ = ∫ B • dS to pass through  
each turn of the circuit as shown in Figure.

If the circuit has N identical turns, we define
the flux linkage λ as

λ = Nψ

If the medium surrounding the circuit is  
linear, the flux linkage X is proportional to the  
current I producing it.



Inductance
Inductance L of an inductor as the ratio of the
magnetic flux linkage λ to the current I
through the inductor

The unit of inductance is the henry (H) which  
is the same as webers/ampere.



Inductance is a measure of how much magnetic  
energy is stored in an inductor.



The magnetic energy (in joules) stored in an  
inductor is expressed as



Mutual Inductance
➢

➢

➢

If instead of having a single circuit we have
two circuits carrying current I and I as

1 2

shown in Figure, a magnetic interaction exists  
between the circuits.

and ψ are
221 1 12 21

Four component fluxes ψ ,ψ ,ψ  

produced.

The flux ψ , for example, is the flux passing
12

through circuit 1 due to current I in circuit 2.
2

and S is the area of
2

If B in the field due to I
2

circuit 1, then
1





We define the mutual inductance M as the
12

ratio of the flux linkage λ  

1  to current I , that is
2

= N ψ on circuit
1 1212





Magnetic Energy







Inductance of a Solenoid

For an infinitely long solenoid, the magnetic flux  
inside the solenoid per unit length is





For length l of the cable,

The internal inductance per unit length, given by



flux linkages between the inner and the outer  
conductor as in Figure. For a differential shell of  
thickness dρ.



The inductance per length is



Unit IV
TIME VARYING FIELDS AND 

MAXWELL’S EQUATIONS



– Conduction Current Density (in A/unit area)

jH


=

Ampere’s Law – Curl H Equation

(quasi) Static field Time varying field

t

D
jH




+=




– Electric Flux Density (Electric Displacement) [in C/unit area]D


cj


sd
t

D
IldH

S

c

C





•




+=• 

Integral Form of Ampere’s Law for time varying  fields

Displacement 

current 

IC    – Conduction Current [A] linked to a conductivity property

Displacement 

current density

Displacement Current
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Displacement current density

IIIldH dc

C

=+=•


 •



=•=

SS

dd sd
t

D
sdjI






Total current

Connection between electric and magnetic fields under 

time varying conditions

Displacement Current

sdEsdjI cc


•=•=  

Conduction current density

)( Ejc


=



Need for Displacement Current

 Faraday: vary B-field, generate E-field

 Maxwell: varying E-field should then produce a B-field, but not covered by 
Ampère’s Law.

170

Surface 1 Surface 2

Closed loop

Current I

❑ Apply Ampère to surface 1 (flat disk): line integral 

of B = 0I

❑ Applied to surface 2, line integral is zero since no 

current penetrates the deformed surface.

❑ In capacitor,                 , so

❑ Displacement current density is

t

E
jd




=




0

dt

dE
A

dt

dQ
I 0==

Aε

Q
E

0

=

( )
t

E
jjjB d




+=+=




0000 



Maxwell’s Equations
• Start withAmpere’s Law B ||l = 0I

Earlier, we just went on a  
closed path enclosing  
surface 1. But according to  
Ampere’s Law, we could  
have considered surface 2.

The current enclosed is the  
same as for surface 1. We  
can say that the current  
flowing into any volume  
must equal that coming out.



Maxwell’s Equations
• While the capacitor is discharging, a current  

flows

• The electric field between the plates of the  
capacitor is decreasing as current flows

• Maxwell said the changing electric field is  
equivalent to a current

• He called it the displacement current



Maxwell’s Equations



Maxwell’s Equations
Relate Electric and Magnetic fields generated by charge 
and current distributions.

1,,In vacuum 2

0000 === cHBED 


t

D
jH

t

B
E

B

D




+=




−=

=

=











0



E = electric field

D = electric displacement

H = magnetic field

B = magnetic flux density

= charge density

j = current density

0 (permeability of free space) = 4 10-7

0 (permittivity of free space) = 8.854 10-12

c (speed of light) = 2.99792458 108 m/s



Maxwell’s 1st Equation

000

1






 Q
dVSdEdVEE

VSV

==== 
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0
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q
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dSq
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Equivalent to Gauss’ Flux Theorem:

The flux of electric field out of a closed region is proportional to 

the total electric charge Q enclosed within the surface.

A point charge q generates an electric field

Area integral gives a measure of the net charge 
enclosed; divergence of the electric field gives the density 
of the sources.



Gauss’ law for magnetism:  

The net magnetic flux out of any closed 
surface is zero. Surround a magnetic dipole 
with a closed surface. The magnetic flux 
directed inward towards the south pole will 
equal the flux outward from the north pole. 

If there were a magnetic monopole source, 
this would give a non-zero integral. 

Maxwell’s 2nd Equation0= B


 == 00 SdBB


Gauss’ law for magnetism is then a statement that There 
are no magnetic monopoles



Equivalent to Faraday’s Law of Induction:

(for a fixed circuit C)

The electromotive force round a 

circuit is proportional to the rate of 

change of flux of magnetic 

field, through the circuit.

Maxwell’s 3rd Equation
t

B
E




−=




dt

d
SdB

dt

d
ldE

Sd
t

B
SdE

C S

SS


−=−=





−=

 










 = ldE




 = SdB


N S

Faraday’s Law is the basis for electric 
generators. It also forms the basis for 
inductors and transformers.



Potentials
 Magnetic vector potential:

 Electric scalar potential:

 Lorentz Gauge:

ABAB


==  thatsuch0

ff +→+→ AAf(t)


,
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Electromagnetic Boundary 
Conditions

Region 2

Region 1
n̂



Electromagnetic Boundary 
Conditions
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Phasor Representation of a Time-
Harmonic Field
 A phasor is a complex number representing the 

amplitude and phase of a sinusoid of known 
frequency.

( )  jAetA +cos

time domain frequency domain

phasor



Phasor Representation of a Time-
Harmonic Field
 Phasors are an extremely important concept in the 

study of classical electromagnetics, circuit theory, 
and communications systems.

 Maxwell’s equations in simple media, circuits 
comprising linear devices, and many components 
of communications systems can all be represented 
as linear time-invariant (LTI) systems.  (Formal 
definition of these later in the course …)

 The eigenfunctions of any LTI system are the 
complex exponentials of the form:

tje 



Phasor Representation of a Time-
Harmonic Field

 If the input to an LTI 
system is a sinusoid of 
frequency , then the 
output is also a sinusoid 
of frequency  (with 
different amplitude and 
phase).

tje  LTI ( ) tjejH 

A complex constant (for fixed 
); as a function of  gives the 
frequency response of the LTI 
system.
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Phasor Representation of a Time-
Harmonic Field
The amplitude and phase of a sinusoidal 

function can also depend on position, and 
the sinusoid can also be a vector function:

( ) )()(ˆ)(cos)(ˆ rj

AA erAartrAa  −
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Phasor Representation of a Time-
Harmonic Field
Given the phasor (frequency-domain) 

representation of a time-harmonic vector 
field, the time-domain representation of the 
vector field is obtained using the recipe:

( ) ( ) tjerEtrE Re, =



Phasor Representation of a Time-
Harmonic Field
Phasors can be used provided all of the 

media in the problem are linear  no 
frequency conversion.

When phasors are used, integro-differential 
operators in time become algebraic 
operations in frequency, e.g.:

( )
( )rEj

t

trE




 ,



Time-Harmonic Maxwell’s 
Equations
 If the sources are time-harmonic (sinusoidal), 

and all media are linear, then the 
electromagnetic fields are sinusoids of the same 
frequency as the sources.

 In this case, we can simplify matters by using 
Maxwell’s equations in the frequency-domain.

 Maxwell’s equations in the frequency-domain 
are relationships between the phasor 
representations of the fields.



Maxwell’s Equations in Differential Form for 
Time-Harmonic Fields

mv
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qB
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JJDjH

KKBjE
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



Maxwell’s Equations in Differential Form for Time-
Harmonic Fields in Simple Medium

( )

( )









mv

ev

i

im

q
H

q
E
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=
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Unit V
PLANE ELECTROMAGNETIC 

WAVES







Electromagnetic waves
 Maxwell’s equations predict the existence of electromagnetic waves, later 

discovered by Hertz.

 No charges, no currents:
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Nature of Electromagnetic Waves
 A general plane wave with angular frequency  travelling in the 

direction of the wave vector k has the form

 Phase                = 2  number of waves and so is a Lorentz invariant.

 Apply Maxwell’s equations

)](exp[)](exp[ 00 xktiBBxktiEE

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Waves are transverse to the direction of propagation, 
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Plane Electromagnetic Wave
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Plane Electromagnetic Waves
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Waves in a Conducting Medium

 (Ohm’s Law) For a medium of conductivity ,                                              

 Modified Maxwell:

 Put
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Attenuation in a Good Conductor
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Charge Density in a Conducting Material

 Inside a conductor (Ohm’s law)

 Continuity equation is

 Solution is
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So charge density decays exponentially with time. For a very good 
conductor, charges flow instantly to the surface to form a surface charge 
density and (for time varying fields) a surface current. Inside a perfect 
conductor (→) E=H=0



Maxwell’s Equations in a Uniform Perfectly 
Conducting Guide
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Hollow metallic cylinder with perfectly 

conducting boundary surfaces

Maxwell’s equations with time dependence exp(it) are:
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 is the propagation constant

Can solve for the fields completely 

in terms of Ez and Hz



Special cases
 Transverse magnetic (TM modes):

 Hz=0 everywhere, Ez=0 on cylindrical  boundary

 Transverse electric (TE modes):
 Ez=0 everywhere,                  on cylindrical boundary

 Transverse electromagnetic (TEM modes):
 Ez=Hz=0 everywhere

 requires
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Cut-off frequency, c

▪ <c gives real solution for , so attenuation 
only. No wave propagates: cut-off modes.

▪ c gives purely imaginary solution for , 
and a wave propagates without attenuation.

▪ For a given frequency  only a finite number of 

modes can propagate.
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Propagated Electromagnetic Fields
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Phase and group velocities in the simple wave guide
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Calculation of Wave Properties

 If a=3 cm, cut-off frequency of lowest order mode is

 At 7 GHz, only the n=1 mode propagates and

GHz5
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Flow of EM energy along the simple guide
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Fields (c) are:

Time-averaged energy:
Total e/m energy 

density

aAW 2
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1
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Poynting Vector
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Poynting vector is ( )xyzy HEHEHES −== ,0,
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So energy is transported at a rate:
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Electromagnetic energy is transported down the waveguide 

with the group velocity
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