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 Electricity and magnetism are different facets of
electromagnetism
— a moving electric charge produces magnetic fields
— changing magnetic fields move electric charges

 This connection first elucidated by Faraday, Maxwell

« Einstein saw electricity and magnetism as frame-
dependent facets of unified electromagnetic force
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~—— Magnetic fields from electricity

« A static distribution of charges produces an electric
field

« Charges in motion (an electrical current) produce a
magnetic field

— electric current is an example of charges (electrons) in motion

Electric

current w current
N\
>

\ Magnetic field
magnetic
field
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= Electromagnets

« Arranging wire in a coil and running a current
through produces a magnetic field that looks a lot
like a bar magnet

— called an electromagnet

— putting a real magnet inside, can shove the magnet back
and forth depending on current direction: called a
solenoid

Current Flow ¢



Electromagnetic Ra

-

 Interrelated electric and magnetic fields traveling through space

« All electromagnetic radiation travels at ¢ = 3x102 m/s in
vacuum — the cosmic speed limit!
— real number is 299792458.0 m/s exactly



~——Examples of EIW

« AM and FM radio waves (including TV signals)
« Cell phone communication links

« Microwaves

* |Infrared radiation

« Light

e X-rays

« Gamma rays

« What distinguishes these from one another?
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Cylindrical Coordinate System
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Spherical Coordinate System
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(line charge)

(surface charge)

(volume charge)
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Dly%gagocrurq)p 5 and Analysis

Del or nabla operator \V4 :( 0 ’ 0 , 0 ]

e In Cartesian coordinates OX 0y 0z
Combining vectors in 3 ways

e Scalar (inner) product a.b =c (scalar)
 Cross (vector) product axb =c (vector)

e QOuter product (dyad) ab = c (tensor)



Scalar Product - Divergence

r is a Cartesian position vector r=(x,y,z)

Ar)=(ALA A, )
A is vector function of position r
oA, OA, OA
V.A = + +—=

Div A = ox oy (7

Scalar product of del with A

Scalar function of position
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Cross Product Curl

Curl A = VXA = a a 5
XN OZ

A, A, A, :
aA oA

VXA —i OA, . (8Az_anj+k y OA,
0Z oX 0z oxXx oy

Cross product of del with A

Vector function of position
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Gradient

d(x,y,z) is a scalar function of position
[6@ o 8(pj
Gradp=mp= \OX Oy 0z

Operation of del on scalar function

Vector function of position 5 s=const.




Divergence Theorem

N

* Tangentdr=idx +jdy i

* Outward normal nds=idy-jdx
* n unit vector along outward normal
* ds = (dx>+dy?)">
* P(x,y) = -V, Q(x,y) = Vi
Cartesian components of the same vector field V
* Pdx + Qdy = -V,dx + V,dy
°* (1Vx+jVy.(idy-jdx)=-Vydx+ Vydy=V.nds
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‘Divergence Theorem 2-D 3-D
Apply Green’s Theorem

§P(x y)dx +Q(X,y)dy = H (aQ(X ) an;/ y)j

ov, oV
iv.n ds:HA[ o jdxdy HVV dxdy

In words - Integral of V.n ds over surface contour equals
integral of div V over surface area =~ e

./vVn ds 2, &

Integral 8f V.n dS over boundlng surface S equals 1ntegral of
div V dv within volume enclosed by surface S



Curl and Stokes’ Theorem

¢ For divergence theorem P(x,y) =-V,  Q(x)y) = Vi
* Instead choose Plxyl=V, Olxyl=V,
* Pdx + Qdy = V,dx + V, dy

*V=iVy+jV,+0k
P(x,y)dx+Q(X,y) =V, dx +V, dy

P(x,y)dx+Q(x,y)dy =(i V, + ]V, ).(idx +jdy)=V.dr

8Q(X,y) Y 8I:)(X’y) 7 avy A aVx
OX oy X

§V.dr = _UA (V x V).k dxdy

=(VxV).k

local value of I x V




Stokes’ Theorem 3-D

In words - Integral of (& x V) .n dS over surface S equals
integral of V.dr over bounding contour C

[t doesn’t matter which surface (blue or hatched). Direction of
dr determined by right hand rule.

local value of BIx V

V. dr fv.dr=[[ (VxV).nds

local value of V
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~—— Stroke’s Theorem

%E-dIZJ(VXE%dS:O

VXE=0
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Introduction

Electrostatics can be defined as the study of electric charges at rest. Electric
fields have their sources in electric charges.

( Note: Almost all real electric fields vary to some extent with time. However,
for many problems, the field variation is slow and the field may be
considered as static. For some other cases spatial distribution is nearly same
as for the static case even though the actual field may vary with time. Such
cases are termed as quasi-static.)

In this chapter we first study two fundamental laws governing the
electrostatic fields, viz, (1) Coulomb's Law and (2) Gauss's Law. Both these
law have experimental basis. Coulomb's law is applicable in finding electric
field due to any charge distribution, Gauss's law is easier to use when the
distribution is symmetrical.



Coulomb's Law

* Coulomb determined
— Force Is attractive if charges are opposite sign

—Force proportional to the product of the charges g,
and g, along the lines joing them

—Force inversly proportional square of the distance
s le
— |Faa| o |Qu] 1Qq| / 11z,

— Or
— |Fia|= K |Q4] Q2] / 11y,



Coulomb's Law

* Units of constant can be determined from Coulomb's
Law

* Colomb (and others since) have determined this
constant which (in a vacuum) in Sl units is
—k = 8.987.5x10° Nmz2C-2

® kis normally expressed as k = 1/4ng,

— where Is the permittivity of free space



Coulomb's Law

The equation for the magnitude of the Coulomb force between two point charges (), and
J7 in a vacuum is given by

where
G| 8
(| 8
F]E iﬂ
'i"']g iﬂ
Eq 18
1
— I8
4mey

Q1|

F.l =
i dmegrd,

the magnitude of the charge ¢); in coulomts (C)

the magnitude of the charge (); in conlomts (C)

the electrical force acting on the charge (), due to charge (); in newtons (N)
the distance between the point charges ), and ¢); in metres (m)

the permittivity of free space in C* N™' m™*

the Conlomb constant in N m® 2,

The direction of the force F; is determined by the sign of the charges; the force is
attractive if the charges have opposite signs, and repulsive if the charges have the same

sign.



Vector form of Coulomb’s
Law




Coulomb’s Law

vs Newton’s Law of Gravity
1 QiQ; r F,=-G MM

=
12 7 D =
dme, |1y, | t
« Attractive or repulsive ¢ Always attractive
e 1/r? * 1/r e? 2
—>>-0Gm
e Vvery strong : yeryweak 4re,

large scales, planets,

relatively local scales :
y the Universe




Electric Field

Physicists did not like the concept of

“action at a distance” i.e. a force that They preferred to think

was “caused” by an object a long

distance away

of an object producing
a “field” and other

Thus rather than ...

@
@

objects interacting with

that field

~
e

Hkethtothik...

-



Electric Field

Electric Field E is defined as the force
acting on a test particle divided by the
charge of that test particle

Thus Electric Field

E = 0, from a single
charge Is
c_ 1 0O -




Electric Field of a single charge

E
Q/’
- E

Note: the Electric Field is defined
everywhere, even If there is no test
charge Is not there.




Charged particles in electric
field

Using the Field to determine the force




Electric Field as a vector
field

The Electric Field Is one example
of a \ector Field

A “field” (vector or scalar) is defined
everywhere

A vector field has direction as well assize

The Electric Field has units of N/C




Representation of the
Electric Field

It would be difficult to represent the electric field by
drawing vectors whose direction was the direction of the
field and whose length was the size of the field

everywhere




Representation of the
Electric Field

Instead we choose to represent the electric field with
lines whose direction indicates the direction of the field

Notice that as we
move away from the
charge, the density of
lines decreases

These are called I
Electric Field Lines




Drawing Electric Field Lines

The lines must begin on positive charges (or
Infinity)

The lines must end on negative charges (or
Infinity)

The number of lines leaving a +ve charge
(or approaching a -ve charge) Is
proportional to the magnitude of the charge
electric field lines cannot cross



Electric Field Lines

E field lines E field lines

(a) (b)

E field lines

Field is not zero here

W
"

Field is zero at midpoint

(a) (b) (c)



Field lines for aconductor

E field lines




Drawing Electric Field
Lines: Examples




Electric Field
Lines

Define p= A ~p:DN

since N“nes oC Q

' 4

Q we know

4m k2 | E|= 1 Q

Amey | r|?
The number density of field lines is meo| 1|

[E |ocp




Electric Flux:
Field Perpendicular

For a constant field perpendicular to a surface A

Electric Fluxis
defined as

@ =|E |A



For a constant field

EIeCtriC FIUX: NOT perpendicular
to a surface A
Non

Electric Fluxis
defined as

perpendrcular

® =| E |Acosb




Electric Flux: Relation to

field lines
® =|E |A

Field line p o E]
density

Field linedensity ~ pAoc|E| A
x Area

- Number of flux lines N oc ©




Gauss’s
Law

Relates flux through a closed surface
to

charge within that surface



Flux through a sphere
from a point charge

The electric field |
around a point charge

Thus the
flux on a —
sphere IsE
X Area

Cancelling a Y
we get £




Now we change the
radius of sphere

Flux through a sphere froma
pointcharge

The electric field IEE R )

around a pointcharge Are | r |2
ol It

| El= 2
47[80 | r2|
1 2

2~ Tdnre[r |ZX47t|r2

0 2
-0 The fluxis
- - the same D, =P, = Q
0

as before &



Flux lines & Flux

Just what we would expect because the Nocd &N
number of field lines passing through each
sphere is the same

and number of lines passing Q
: O =@ =
through each sphere is the same £

In fact the number of flux
lines passing through any
surface surrounding this

charge is the same
even when aline
passes in and out
of the surface it
CrosSes sl Qnce
more than in




What is Gauss’s
Law?

Gauss’s Law does not tell us anything new,
It s NOT a new law of physics, but another
way of expressing Coulomb’s Law

Gauss’s Law Is sometimes easier to use than
Coulomb’s Law, especially if there is lots of
symmetry in the problem



Example of using Gauss’s Law 1

it

— oh no! I’ve just forgotten Coulomb’s Law!
%ﬁw&mm ber @

consider spherical surface - @
centred on charge g,

By symmetry E is L to surface

o=E|A=Q —E|4nr:=9




Example of using Gauss’s
Law 2

_What’s the field around a charged —

sphencals

Again con3|der spherical

surface centred on
charged shell 0
Outside Pou: — €,
out Soaseg.l gt Q
Arg, r?
Inside
harge within surface =0

®, =0 E=0




Properties of
Conductors

For a conductor in electrostatic equilibrium

1.E 1s zero within the conductor

2.Any net charge, Q, Is distributed on surface
(surface charge density c=Q/A)

3. E immediately outside Is _L to surface
4.c Is greatest where the radius of curvature

IS smaller
G >0,



1. Eis zero within
conductor

If there 1s a field in the conductor, then the
free electrons would feel a force and be
accelerated. They would then move and
since there are charges moving the
conductor would not be In electrostatic
equilibrium

hus E=0




2. Any net charge, Q, is
distributed on surface

Consider surface S below surface of conductor

Y Since we are in a conductor in
equilibrium, rule 1 says E=0, thus ®=0

Gauss’s Law O =EA= Zq leg

So, net charge within

qi / e :O ;
thus Z : the surface iIs zero

N As surface can be drawn
arbitrarily close to surface of
conductor, all net charge must
be distributed on surface




3. E immediately outside is
1 to surface

E Consider a small cylindrical surface at the surface

- of the conductor
~

=1

If E,>0 it would cause surface charge g to move thus
It would not be in electrostatic equilibrium, thus E =0

cylinder is small enough that E is constant

Gauss’s Law ‘ ®=EA=q/¢

I | == EZQ/AS
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Electric Field inside a dielectric

Material

Dielectric- Conductor And
Dielectric — Dielectric Boundary

Conditions
Capacitance
Current Density
Ohm's Law

Equation of Continuity



Electric Field inside Diectric
medium

positive charge +Q(nucleus) as in Figure
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A -

thadigigelc h=arQeFewhilethe ngegaldivehdediEeiliss
displaced in the opposite directionfromby the
force F =-QE

A dipole results from the displacement of the
charges and the dielectric is said to be
- polarized.




\ e

T —

The major effect of the electric field E on a
dielectric is the creation of dipole moments that
align themselves in the direction of E.
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S i

V. fA=fV-A+A-Vf
P'aR . P V’ 'P

1| P 1 )
V:f V' - RV"-P av’




Pps=P~an
ppr = —V-P

The total positive bound charge on surface S
bounding the dielectric is

P

0, = tf;P-dS= 0,5 dS

o

while the charge that remains inside S is

-0, = Jppvdv: —J V:Pdv

Vv Vv



Thus the total eharge of thexdielectric material

—Temains zero, that 1is,

Total charge = ff Pps dS + J Pppdv=0Qp — 0, =0
S v

We now consider the case in which the dielectric

region contains free charge. If P 1S the free

charge volume density, the total volume charge
density p, is given by

p, =py + pp = V-&E



A

/ pv:V'SGE_ppv

V:(g,E + P)
=V-D

D=¢E+P

We would expect that the polarization P would
vary directly as the applied electric field E. For
some dielectrics, this is usually the case and we
have

P = x.ceE




 DIELECTRIC CONSTANTAND

STRENGTH
D =&l + x.) E = g,8,E

| D= &eE




e 1S_called the permittivity-of the dielectr’rc,e/is

the permittivity of free space, as approximately
109/36m F/m, and € 1is called the dielectric

constant or relative permittivity.

The dielectric strength is the maximum electric

field that a dielectric can tolerate or
withstand without breakdown.

A dielectric material is linear if € does not
change with applied E field. homogeneous if ¢
does not change from point to point, and
isotropic if € does not change with direction.



10>

411'808,1{’2

W = —J e.eE* dv
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~ BOUNDARY CONDITION

Dielectric-Dielectric Boundary Conditions

Consider the E field existing in a region consisting

of two different dielectrics characterized by e
1

=g e and e =e¢e as shown in Figure.E and E in
1 2

O ri1 2 0O r2

media 1 and 2, respectively, can be decomposed
as

E, =E, +E,
E2 — EZI + EZH












/
o ooneyy B

e

AQ — Pg AS = DIHVAS — DZH AS

Dln o D2n — Ps
Dln — DZH
SIEIH — 82E2n

El Sin 91 — Elr = EE! = Ez Sin 82



- El SIn 61 — E2 Sin 62

£, cos0, = D,, = D,, = &kFE,cosb,
81E1 COS 91 = 82E2 COS 92

tanf; tan@,
€1 €7

|

tan 91 o

tanf, &




onductor-Dielectric —
Boundary

dielectric

——aE (e = g,&,)




dielectric




Al Ah Ah AR
/0:0-Aw+0-7+EH-7-—~E,-Aw-En-——O-—

2 2
As Ah > 0,
E =0

AQ =D, - AS — 0 AS

AQ
AS

Dn = Ps

Dn:pS~



e A

S

1. No electric field may exist within a conductor; that is,

p, =0,

E=0

(5.70)

2. Since E = —VV = (), there can be no potential difference between any two points
in the conductor; that 1s, a conductor is an equipotential body.
J. The electric field E can be external to the conductor and normal to its surface; that 1s

Dt - BOSI‘EI = 0!

Dn = Soern = Ps

(5.71)
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Capacitance

C_Q__sg‘SE-dS
"V [E-dl

1
V:VI_VQZ"[ E - dl

9
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~ Parallel-Plate Capacitor

dielectric & plate area S




I -

/°\



__ Ps
E = 8( ax)
_ o,
S
_ J 0
= — H—u—ar
o L &S
L0 _&S
v







/CoaxiW |

Q=8§E*ds=8E921rpL

o
2wepl P

| a el
V=-J E-dl= J < aﬂ‘-dﬂap
b

, _iﬁﬁpﬂ
() b
=-—=—|n—






Spherical
Capac

tor

o
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0 =¢ %E'dS = eE4mr°

E-—2 a
- 4dwer
. o1 - o ra
V= — Edl:_ QZar
), )  Adrrer
o1 1 |

- dr a,






Fundamental Principles and Relationships

Poisson : V2V = —;O Laplace : V2V =0
0
(1)

Cylindrical : V2V — %% (s%) (2)

%%f (3)

ol @

0) %—n b) diis%]zu (5)
) =2 4 6=



e
Current And Current

-2 Density

Al =JTvAS

Al=J- AN







Continuity of Current
ﬁI; Joas - -2

]QSJ S = Li{v- ) d






Resistance & Ohm's Law
F = —rE

= — s

= —pPe it E ‘




f=[ JdS=J85
5

F,,,!,=—rE-«dL=—E-« rdL=—E-,Lh
I I

= E-L_
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Force on a Charged Particle

The electric force Fe on a stationary or moving
electric charge Q in an electric field is given by
Coulomb's experimental law and is related to
the electric field intensity E as

F.=QE

This shows that if F.is positive, F and Ehave the
same direction.

/



/

A magnetic field can exert force only on a
moving charge.

From experiments, it is found that the magnetic
force Fm experienced by a charge Q moving
with a velocity uin a magneticfield B is

F, =Qu X B
F is perpendicular to both u and B.

m



/ /

Lorentz Force equation

For a moving charge Q in the presence of both
electric and magnetic fields, the total force on
the charge is given by

F = Fe+Fm

/

Or
F = Q(E +uXB)

This equation is known as Lorentz Force
equation.



It relates mechanical force to electrical force.

If the mass of the charged particle moving in E
and B fields is m, by Newton's second law of

motion.
F = mOlu =Q

= [UX B0

The solution to th1s equation is important in
determining the motion of charged particles in

E and B fields.



Force on a Current Element
To determine the force on a current element 1d/
of a current-carrying conductor due to the

magnetic field B

J =
We know that
| diI=K dS = Jdv

Then
| dl ] dv=dQ u



Hence —

. =
- | dI=dQu
The force acting on an elemental charge dQ
moving with velocity u Is equivalent to a
conduction current element | dl in a magnetic
field B.
dF =1dl XB

If the current is through a closed path L or
circuit, the force on circuit is given by

F=¢ 1dIXB



Mgnetic field produeed by the cupsen“/

element I1d/ does not exert force on the element
itself just as a point charge does not exert force
on itself.

The B field that exerts force on Idl must be due
to another element.

If instead of the line current element I dl. we
have surface current elements KdS or a volume
current element J dv, Then

dF=KdS XB Or dF =Jdv XB



Then

F = K dSXB

and
F=¢ JdvXB



Ampere' Circuital Law

- Ampere'scircuit law  states that the line
integral of the tangential component of H
around a dosed path is the same as the net
current 1.IK. enclosed by the path.

enc



il

dif. = —— sin 6 Jd@
2
LB
o= J sin 8 6
I 2 .
nf
H = £y (cos f, — cos ) a,

Substituting n = N/ gives

NI
H= " (cosf, — cosf))a,



At the center of the solenoid,

0s f e cos f
C = —
L+ )" |

In{
H=— - .
2a” + €442

[£€ > aorf, = 0°,8, = 180°,




Ampere's Circuital Law

Ampere's circuit law states that the line
integral of the tangential component of H

around a closed path is the same as the net
current I  enclosed by the path.

enc

In other words, the circulation of H equals [, ; that is,

lfﬂ.mﬂm.ﬁ

3




|

L. %H*dl: {(VXH).dS
L S

I = JJ-dS
S

VXH=]




FORCES DUE TOMAGNETIC
FIELDS

= There are at least three ways in which force
due to magnetic fields can be experienced.

1. Due to a moving charged particle in a B
field.

2.0n a current element in an external B field.
3. Between two current elements.



Force between Two Current
Elements

Let us now consider the force between two
elements I1 dl1 and I2 dl2.

According to Biot-Savart's law, both current
elements produce magnetic fields.

So we may find the force d(dF )on element I
1 1
dl due to the field dB2 produced by elementI

dl
- d ®F,0=I,dl, X dB,

2



From Biot-Savart's law

Ql,dl ,Xa
dB, 2500 2R -
4R,,

d |:‘:“:“:I:olldllx EI2d|22X ag 21_D
4 R,,

o111, 4Pdl X il 2 Xae [

F1
4 Rzl



fotdly

[



MAGNETIC TORQUE AND
MOMENT

The torque T (or mechanical moincnl of force)

on ihe loop is the vector product of the force F
and the moment arm r.

Thatis T =r XF




Consider a rectangular loop of length 1 and
width w placed in a uniform magnetic field B as
shown in Figure

S axis of rotation



3 1

F=1[,dIXBI[dlXB
F=1[dza,X BIl [dz a,XB
0 0

Or
F=F,- F,=0

Thus F = Bil. Thus no force is exerted on the
loop as a whole. However Fo and -Fo act at
different points on the loop, there by creating
a couple.



The torque on the loop is

ITI=1Folw L

Or F=BllwsinC
But lw = S, the area of the loop

T =BISsInL

We define the quantity
m=1S a,
mis defined as the magnetic dipole moment.

Units are A/m>.



Magnetic Dipole Moment

The magnetic dipole moment is the product
of current and area of the loop.

Its direction is normal to the loop.

Torque on a magnetic loop placed in Magnetic
field is

T=mXB

This is applicable only when the magnetic field
is uniform in nature.



Field due to a Magnetic Dipole

A Bar magnet or a small .
filamentary current loap is usually
referred to'as a magnetic dipole.

Consider a current carrying loop
carrying a current of | amps, the
the magnetic field due this at any
arbitrary point P(r,0,¢) due the
loop Is calculated as follows.



The magnetic Vector Potential at P is
| dl
£ .

Al a  “sinla;

- I

P(r, 0, ¢)

4 r?

or

AmXa,
4 re

>V

X o



The magnetic Flux density B is determined as

B=V XA
Theretfore

B= 4@11_3 [02cod] a0sin[a{]
r



Force Experienced

A rectangular
loop carrying
current / 1s

placed parallel
to an infinitely
long
filamentary
wire carrying
current / _as

shown in Figure




The force acting on loop 1is

F,= FOFEFEF
4F|=|2 dlzx
B
—aF, Wwhere F ,F ,F ,and F
1 2 3

are respectively, the
forces exerted on sides

of the loop labeled 1,
2,3, and 4 in Figure

4



Due to the infinitely long wire

0
Bl=2—10a.|:|
Then
F.=1,$dl, X B,

b
|
E = 2§ﬁ dza, X 20 ‘a
| Z= 0
0
[l 1,b

E. = 7 a  (Attractive)
0




Fk3= |2¢dlzx le
F =| idza X 0%1 aD
3 2_ 7 Zm:l

0
0

PIERPY

a (Repulsive)
3 2 m -

od |

= SR 3
F2=|2_¢ d d XZ mjo :
1.1, A

Inf—_ g (Parallel)
2 0

F,



= B g
= —IZI|21|2 In Ejla . (Parallel)
0
The TotalFForce
=l 1l L maq




Magnetization in Materials

- The magnetization M (in amperes/meter) is
the magnetic dipole moment per unit volume.

- Ifthere are .atoms in a given volume Av and
the k" atom has a magnetic moment m .

K
N

2. M

k=1

\Y

M =
lim '"
. 1 .
= A medium for which M is not zero everywhere

is said to be magnetized.






But

MXV: L=ly ixm-v:t xM
E R R

Substituting the above equation in A

- VIXM 1 o0 1 M 41
A4j Rdv4j'VXRdv

Applying the Vector Identity
v lX|:e|v1=—j F X dS

Vi St



VXM 1 M Xa
A [ dv:| o o dS!
b . VIRXM |61, fﬁ M RXa,
A=—f oo — ¢ ds!
A Db g o g2KeE R
-4 p 4 &

Comparing the equations
J b= V XM
Ky=M Xa,

J. 1s the bound volume current density
b

or magnetizing volume current density.

K. is the bound surface current density.
b



Infree Space 5
Y. XH=1], Or VAT HJ

0 f

J 1s the free current volume density
f

In a medium where M is not equal to zero, then

vXxoBo=J31) ,=J=V XBWXM

0
o B={1,[H MO

For linear materials, M depends linearly on H
such that

M =£}H



[, 1s called Magnetic susceptibility of
the medium.

B=Ll,[IH

B={},[[H
Where
O-L0=
0
is called as the permeability of the material

[is called as the relative permeability of the
material



Scalar and Vector
Magnetic

_Potentials

-Vector Potentials due to simple

‘configurations Self and Mutual
Inductances

Determination of
Inductance Energy



Magnetic Potential

= we can define a potential associated with
magnetostatic field B.

= The magnetic potential could be scalar or
vector



Scalar Magnetic Potential

- We define the magnetic scalar potential Vm.

H=-VV,

J=VXH=VX((—VV,)=0

Thus the magnetic scalar potential V is only

m

defined in a region whereJ= 0



Vector Magnetic Potential

dl
A = f pof
. 4R
A — ‘[,u.DKdS
¢ 4R

for line current

for surface current



J pod dv
47R

B=VXA

for volume current



Proof

- We Know that




(x, ¥, z)




B = — ““’Jldl’xV()
47rL R

VX (fF) = fV X F + (Vf) X F

] I
< 5(2) = Losar v ()
R R R




‘P:J'B'dS:j(VXA)-dS'—*jLA-dl
S S L



¥

faa
L




We Know that
VW X VX A=VWVV-A - VA

pol dl' ol
47R  4n

oy

L

_ 1 ;
B=E£j( led1'+(V~)xd1'
LR R _

ngx —dl’,
R

47



=[x =X+ -y + -

1
R
1
R

vl _Goxbar=-yia,te-z)a A
[(x— XY+ —yY+E@-YT* R
____EilifleaR
4 . R’

VXB=V(V-A) - VA

V-A=0




V'A = —u VX H

VA = —u )

This equation is called vector Poisson's equation.
In Cartesian form these can be written as

VzAx =~ podx
2 __
VA, = —pol;

I

VA, = —puJ,






Flux Linkages

- Acircuit (or closed conducting path) carrying
current /produces a magnetic field B which
causes a fluxy= [ B« dS to pass through
each turn of the circuit as shown in Figure.

- Ifthe circuit has N identical turns, we define
the flux linkage 4 as

A =Ny

= Ifthe medium surrounding the circuit is
linear, the flux linkage Xis proportional to the
current I producing it.



Inductance

Inductance L of an inductor as the ratio of the
magnetic flux linkage 41 to the current I
through the inductor

The unit of inductance is the henry (H) which
is the same as webers/ampere.



Inductance is a measure of how much magnetic
energy is stored in an inductor.



The magnetic energy (in joules) stored in an
inductor is expressed as

1% *-—luz
mo 9

i oW,
[ =

| &




Mutual Inductance

- Ifinstead of having a single circuit we have
two circuits carrying current I and | as

shown in Figure, a magnetic interaction exists
between the circuits.

_ Four component fluxes p ,p ,y andy are
11 12 21 22

produced.

. The flux ¢ , for example, is the flux passing

through circuit 1 due to current | 2 in circuit 2.
If B inthe field due tol and S isthe area of
2 2

£
circuit 1, then



circuit 1

circuit 2



]Plz: J Bzds
S

v ]

We define the mutual inductance M - as the

ratio of the flux linkage A = N y on circuit
, 1419
1 tocurrent |, that is
2

A N>,
lez_ﬂ": 2 I
/) 4

M, = My,



We define the self-inductance of circuits | and 2, respectively, as

A B N Y,
Ly=—=—
[ I
}.. ¥ ~
LE — 22 — NE?J-
{- [

L —

W, = W, -~ W, + W,

1 s



Magnetic Energy

Just as the potential energy in an electrostatic field was derived as

1| ] .
We=—=— | D-Edv=— | eE dv
g 2J 1[

 AY  uH Ax Az
Al Al

AL

1 I

AW, = SAL Al = 5 uH? Ax Ay Az
1 2

AW, = ‘2‘"p,H Av



conducting
sheets




AW, 1

=i = — uH?
v ﬁiilﬂ Av 2pL
1 B’
wm-—szH—;B H_E;;
Wm*—:medv
W *—lJB'Hd —lf H* d
m 5 14 3 H v




Inductance of a Solenoid

For an infinitely long solenoid, the magnetic flux
inside the solenoid per unit length 1is

B = uH = uln
Y = BS = uln




—- 7



For length 1 of the cable,

\ ”JH JE u[depdz_ul{?
= _ Bt
=0 “7z=0

d2ra” 87

_ M _ut
11 1 871'

The internal inductance per unit length, given by

T} Li[‘l
Lh1:: —

Nal
¢ 8T

H/m




flux linkages between the inner and the outer
conductor as in Figure. For a differential shell of
thickness dp.




L = Lin + Lext

ut

2T

The inductance per length 1is

L.'

L
{

T}

27

H/m
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Unit IV
TIME VARYING FIELDS AND
MAXWELL'S EQUATIONS



Dis'placement Current

Ampere’s Law — Curl H Equation

(quasi) Static field Time varying field Displacement

|
|
|
- - | /
VxH =] : - current density

Integral Form of Ampere’s Law for time varying fields

Displacement
current

lc - Conduction Current [A] linked to a conductivity property
D - Electric Flux Density (Electric Displacement) [in C/unit area]

J: — Conduction Current Density (in A/unit area)



Displacement Current

§H edl =1_+1;,=1 —. Total current
C

Conduction current density

Displacement current density

Connection between electric and magnetic fields under
time varying conditions
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/
~—— Need for Displacement Current

Faraday: vary B-field, generate E-field

Maxwell: varying E-field should then produce a B-field, but not covered by
Ampere’s Law.

Apply Ampere to surface 1 (flat disk): line integral
of B = p,l

Surface 1+ o . Surface 2

Applied to surface 2, line integral is zero since no

‘ current penetrates the deformed surface.

In capacitor, Qso - d_Q - dE

E- = |-~ A
\ 80A dt dt

Closed loop Displacement current density is

—
Current |

V/\B:ﬂo(J T Jd):ﬂoj T Hoéo —

170
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/

Maxwell’s Equations
. Start Wlth Ampere’s LaW ZB ||AI = Hol

Surface 2

Closed
path

/

-

Surface |

Earlier, we just went on a
closed path enclosing
surface 1. But accordingto
Ampere’s Law, we could
have considered surface 2.
The current enclosed is the
same as for surface 1. We
can say that the current
flowing into any volume
must equal that coming out.



e AR R

/ P

Maxwell’s Equations

While the capacitor Is discharging, a current
flows

The electric field between the plates of the
capacitor Is decreasing as current flows

Maxwell said the changing electric field Is
equivalent to a current

He called it the displacement current



Maxwell’s Equations

Partial differential

Name foim Integral form
Gauss's law: V:-D=p f D - dA = Qena

A
Gauss's law for magnetism: V-B=0 f. B-dA =0

A
Faraday's law of induction: VXE = _% ng - ds = —%
Ampere's law + Maxwell's oD o dq’D
extension: VXH=J+—9?_£H'dS_Ien°+ dt




Maxwell’s Equation

Relate Electric and Magnetic fields generated by charge
and current distributions.

E = electric field

D = electric displacement

H = magnetic field

B = magnetic flux density

p= charge density

] = current density

L, (permeability of free space) = 4x 10”7
go (permittivity of free space) = 8.854 10-12 vV AN H
c (speed of light) = 2.99792458 108 m/s

—

Invacuum D=g,E, B=yH, eu,c’=1

—



\/‘

Maxwell’s 15t Equation

Equivalent to Gauss’ Flux Theorem:
- - -
v.E-L o ([[v-Edv=ffE.a5=2[[[pav =2
€0 Y S &o v o
The flux of electric field out of a closed region is proportional to
the total electric charge Q enclosed within the surface.

A point charge g generates an electric field

-
Are,r
= g ds @
sp'[;!‘reE dS - 4'72-80 SJ{G“I’B r2 &

Area integral gives a measure of the net charge
enclosed; divergence of the electric field gives the density
of the sources. 175



Force Vectors & Field Lines
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V:-B=0] Maxwell’s2"dEquation

il lh‘,‘_‘_‘.‘.ﬁ-f”r

Gauss’ law for magnetism:
V-B=0 < {{B-dS=0

The net magnetic flux out of any closed
surface is zero. Surround a magnetic dipole
with a closed surface. The magnetic flux
directed inward towards the south pole will
equal the flux outward from the north pole.

If there were a magnetic monopole source,
this would give a non-zero integral.

Gauss’ law for magnetism is then a statement that There

are no magnetic monopoles



Equivalent to Faraday’s Law of Induction:

”VAE ds_—jj— ds
iE-drz Hé ds =

(for a fixed circuit C)

The electromotive force round a
circuit g = § E iglproportional to the rate of

change of flux of magnetic

field, @ = J- J. B - tsrough the circuit.




Potentials

Magnetic vector potential:

V-B=0 < 3JAsuchthatB=V A A
Electric scalar potential:

V/\EZ—@Z—Q(V/\A)Z—V/\% < VA E+% =0
ot ot ot ot
= OA . oA

< doWIthE+—=-Vg, so E=-V¢p——

? ot ? ? ot

Lorentz Gauge: 6> d+ f(t), Ao A+Vy

Use freedom to set i%-FV- A:O
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Conditions

Region 1 |

/ e
Region 2




Etectromagnetic Boundary
Conditions
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~ Phasor Representation of a Time-
Harmonlc F|eld

is a complex number representing the
amphtude and phase of a sinusoid of known
frequency.

phasor

Acos(at +0) > A"

frequency domain




/
\\k

“Phasor Representation of a Time-
Harmaonic Field

hasors are an extremely important concept in the
study of classical electromagnetics, circuit theory,
and communications systems.

Maxwell’s e(i[uations in simple media, circuits
comprising linear devices, and many components
of communications systems can all be represented
as (L 11) systems. (Formal

definition of these later in the course ...)

The eigenfunctions of any LT1 system are the
complex exponentials of the form:




vvvvvvvvvvv
i

~ Phasor Representatlon of a Time-
Harmonic Field

s Il

¢ If the input to an LTI

system is a sinusoid of A complex constant (for fixed
frequency o, then the ®); as a function of ® gives the
output is also a sinusoid frequency response of the LT
of frequency o (with system.

different amplitude and
phase).



asor Representation of a Time-

Harmonic Field -
* The amplitude and phase of a sinusoidal

function can also depend on position, and
the sinusoid can also be a vector function:




- Phasor Representation of a Time-

Harmonic Field ,
* Given the phasor (frequency-domain)

representation of a time-harmonic vector
field, the time-domain representation of the
vector field is obtained using the recipe:




vvvvvvvvvvv
-

~ Phasor Representation of a
Harmonic Field

* Phasors can be used provided all of the
media in the problem are

|me-

* When phasors are used, integro-differential
operators in tlme become algebralc




_ Time-Harmonic Maxwell’s "
Equations

If the sources are time-harmonic (sinusoidal),
and all media are linear, then the
electromagnetic fields are sinusoids of the same
frequency as the sources.

In this case, we can simplify matters by using
Maxwell’s equations in the

Maxwell’s equations in the frequency-domain
are relationships between the phasor
representations of the fields.



Maxwell’s Equations in Differential Form for
Time-Harmonic Fields

VxE=—joB-K, K,

VxH=|JoD+J_+J,

V-D=q,
V°B:qmv




e

axwell’s Equations in Differential Form for Time-
Harmonic Fields in Simple Medium

VxE=—(jou+o,)
VxH =(joe+0c)E+J,

v.g ol
E

Vﬂ: qmv
U




Unit V
PLANE ELECTROMAGNETIC
WAVES



Plane EM Wave in a Lossy and Lossless Media:

VxH =T+ jowsE = C!E+ijE=jﬂ.‘{E—jEJ.E=jﬁJE£E,E‘,=E—j'E=EF—jE+.
@ @

Similarly, 4, = gt — ju

Complex wave number: £ = ’1’1."#5.: - Loss tangent: tand_ = E-/E' -2

e

Propagation constant: y = jk = jm.l,'#sc = a+jﬁ=jmﬁil+_ijﬁ
J@E

Exeg® =gt _g= g i&

If the medinm is lossless, a=0); else if the medinm is lossy, a=0.
2T

Phase constant: J = -

_ o (HE vtk g | HE 9y
:rcx—caJE[ 1+ -11%, f-0 E[Jn{m&_) 1A



Case 1 Low-loss Dielectric: —{{lzaa-f—f A= m..;‘,E[[H [—)]

Intrinsic impedance: 17, =JE{1+IL}

"7 -J’_ ~.-"_
Case 2 Good Conductor: i}-}l::-w=ﬂ:1‘% =..,,‘ﬂ,.m:r,
G

=F:{1‘fﬁn=ﬂ+; TE _q+ p&
£, o a o

: 0] 2
P]lﬂ:m]ﬂﬂt_‘f: PP:E: E

{}]

1 1
o Tuc -

Skin Depth (depth of penetration): & =

F{Iﬂgﬂﬁdtﬂﬂdll:tﬂf,ﬁ—l 1_4
a G 2



~—Electromagnetic waves

Maxwell’s equations predict the existence of electromagnetic waves, later
discovered by Hertz.

No charges, no currents: ~ ~ R =
V/\H:a—D V/\Ez—a—B
. ot ot
— B = >
VA(VAE)=—VA6— v-b=0 V-B=0
ot
:—%(V/\é) VAVAE)=v(V-E)-V?E
2 = 2 = =-V’E
__, b __ OE
Yoz T

3D wave equation :
2 2= 2 2
v2E =9 I25+8 E+8 E:yga IZE
ox® oy° oz ot




= NatureﬁEl\ect‘romagneﬁﬁes

A general plane wave with angular frequency ® travelling in the

direction of the wave vector K has the form
E = E, expli(wt—K-X)] B =B, exp[i(wt—K - X)]
Phase wt— lZz %7 x number of waves and so is a Lorentz invariant.

Apply Maxwell’s equations

Ve-ik V.E=0=V-B <« k-E=0=k-B
o : _ kX - _
5 e VAE=-B < kAE=wB

Waves are transverse to the direction of propagation
K and E, B and are mutually perpendicular



Plane Electromagnetic Wave

Electromagnetic waves transport s
energy through empty space, stored Ji
in the propagating electric and l
magnetic fiekds.

* Bt P

Magnetic field . —
variation is L B
pﬂrp-and_ic:l.llar BENE Magnetic

to electric I'ialt:l-__.__‘j'_-_ . field variation

-
- ) = o
- _"'-.
-]
-

A single-frequency electromagnetic
wave exhibits a sinuscidal variation
of electric and magnetic fields in
space.
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Plane Electromagnetic Waves

VAgziZ@—E > LB
c” ot

Combined with k AE = wB

E k 2
deduce that u =
‘B‘ k o
Reminder: The factthat @t —k -X isan
Wavelength A = ‘%T invariant tells us that .
A==k
Frequency v = 22 IS a Lorentz 4-vector, the 4-Frequency vector.
T

Deduce frequency transforms as

a)’zy(a)—V-IZ)za) i



Waves in a Conducting Medium

E = E expli(wt—K-X)] B = B,expli(wt—K - X)]

(Ohm’s Law) For a medium of conductivity o, ] =) E
Modified Maxwell: VY A H = J7+ ga_E E B g@_E
ot ot

ik AH=0E+iwsE

Put = / \

/ & conduction displacement
current current

Copper: o=58x10",e=¢, = D=10"
Teflon: 0=3x10°, =21, = D=257x10"



Combine with VAE:—% = KAE=wuH
== EA(IZAE)=@UIZAH=—a),u(—i0'+a)€)|§
=3 (E-E)Z—kzlg=—a),u(—i0'+a)5)l§

et k?=ou(-ic+ws) since k-E=0

. louc , .
Foragood conductor D >>1, o >>we, k’=—-iouoc = k= %(14)

Wave formis exp i(a)t—ﬁj exp(—i), k =
o o o

where o = & Is the skin - depth
OUC

1

nuation in a Good Conduc
ik AH = 6E +iweE

@-i)

/

[OF

1



copper.mov
water.mov

~— Charge Density in a Conducting Material

* Inside a conductor (Ohm’s law) I -0 E
* Continuity equation is
L j=0
ot
= 6—'0+0V-|§ :O=6—p+gp
ot ot ¢

* Solution is L = P,€

So charge density decays exponentially with time. For a very good
conductor, charges flow instantly to the surface to form a surface charge
density and (for time varying fields) a surface current. Inside a perfect
conductor (c—») E=H=0



Maxwell’
onducting Guide

Hollow metallic cylinder with perfectly
conducting boundary surfaces

y4

Maxwell’s equations with time dependence exp(iat) are:

x4 ‘ VAE:—@z_mﬂH VE=V(V-E)-VA(VAE)
o =% =iwuV AH

VAH =—=lweE = —w’cuE

y [Vz + a)z,ugJ

Assume E(X,V,z,t)=E(x,y)e'?
I:-i (X’ y1 th) o I:i (X; y)e(iwt_}/Z) Then [Vtz o (a)zgﬂ o1 g 7/2)J{

v IS the propagation constant

I, my
HK_J
|
)

Can solve for the fields completely
in terms of E, and H,



/

Special cases

Transverse magnetic (TM modes):
e H =0 everywhere, E =0 on cylindrical boundary

Transverse electric (TaEHmodes):

on

e E =0 everywhere, 2 _om cylindrical boundary

Transverse electromagnetic (TEM modes):
e E =H,=0 everywhere
* requires

v +w’eu=0 or y:iia)\/;
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Cut-off frequency, o

2
Nz 0 e Nz
- F A -—ees

a o, a - 2

®<o, gives real solution for y, so attenuation
only. No wave propagates: cut-off modes.

o>, gives purely imaginary solution fory, | .
and a wave propagates without attenuation. —

_wf o %

i

y=ik, k=\eulo® ~a2) = oo

2
For a given frequency m only a finite mif8r of _ |
modes can propagate. |
N d@ : .
o> 0. = e /glu For given frequency, convenient to
s /E,U T choose a s.t. only n=1 mode

OCcCurs.
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~ Propagated Electromagnetic Fields/

From VAE:—%—?, assuming A s real,

=——s n( jcos wt —kz)
a

H=—VAE = H=
WU
H —An—ﬂcos(mxjsm(a)t— kz)
: wu a a
i Wy, W, f o rempren v N} P e
Xf =N\t /77=N\ | /-
= b f e N Y]]
ttflttt 4!‘%;l1
- st A\ AN ev /] P\
=P ENN~N=r s ) NN
el ¥ F o N Pay rmtmmae p” S ] W
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" / ° ° ° . ° = .
Phase and group velocities in the simple wave guide

Wave number: Kk = \/a(a)2 — a)cz)y2 < ./ EU

27T

Wavelength: A=—> on , the free —space wavelength
kK~ oyeu

Phase velocity: v _= @ 1

SRLSNE

larger than free - space velocity

Group velocity:

do K 1

= <
dk  wesu eu
smaller than free - space velocity

kzzgy(a)z—a)f) = vV, =
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Caleulation of Wave Properties m—

If a=3 c¢m, cut-off frequency of lowest order mode is

8
P o 1 3x10 ~5GHz , _ N7
2r 2a./u 2><OO3 C a/g,u
At 7 GHz, only the n=1 mode propagates and
k = Jeu(o? - w2)? = 22(72 — 5 )"* x10° /3% 10° ~103m™
ﬁzz—ﬂz6cm
K

v, :%z4.3><108ms‘1 > C

K

V,=——= 2.1x10°ms™ < ¢
WEL
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Flow of EM energy along the simple guide

Fields (o>m,) are:

E,=E, =0, E,=Asin"2=cos(at —kz)

a
H, __ K E,, H,=0, H, =~ Acos™ % sin(t —kz)
o amu a
Total e/m energy
Time-averaged energy:. density
a 1
i L oriEPax = Lo W==¢A%
Electricenergy W, = ZEHE‘ dx = ggA a A

0

a ’ i
Magneticeenergy W, = - [ [Fi['dx = s’ (MJ +(kj }
4 A 8 aou wH
n27z_2

a2

=W, since k°+ =gl
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da) 1

=38 " dldo
E(t.2) = E, cos[(@+ Aw)t - (8 + AB)z) + E, cos[(@- Aw)t - (8- AB)z]
= 2E, cos(tAw - zAB) cos(ax - (%)

Let tAw- zAfB=constant = v_= o B IR
£ at Aﬂ Aﬂ/AaJ ag dﬂldw

dv v,
Eg. Show that v_ =V +ﬂ—/‘9’andv -vp-,lﬁ

@ do
(Proof) vp-;,w-vpﬂ, V= dﬂ +ﬂ_ﬁ
A dv

o B=2% ga=2x, ddp+ pii=0=L =L y _y 1%
ﬂ o e T




ng Vector

Poynting vectoris S=E AH = (E Hz’o’—EyHX)

" Poynti

2
Time-averaged: <S> ;(O 01)ki sin? 172X

s d Total e/m energy
) density
1 akA 1
Integrate over x: (S,)== W == 2A2g
4 wu 4
. = k
So energy is transported at a rate: = —v

W +W_ weu

Electromagnetic energy is transported down the waveguide
with the group velocity
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Region 1

Z‘I\A [a_#,,crr.]'
e

E

Ny

Mormal Incidence Plane Wave REeflection and Transmissions at Plane
Boundary Between Two Conduoctive Media

E; =E:le_fl-l
H = Em e s

M /|

* Note: (1) incident, (my,) medmm 1, (y;) propagation constant in region 1, (m1) wawve
impedance in region 1, (z) direction of propagating wawve



With a =mJ§[ 1+[i]1 —1]

JL@J%[ 1+(i]1 +1}

The wave impedance as defined in chapter 2 as the ratio between the electric and magnetic fields




