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Introduction

The transfer of energy from one point to another takes place through
either wave guides or transmission lines

Transmission lines always consist of at least two separate conductors
between which a voltage can exist

Wave guides involve only one conductor

There are two types of commonly used transmission lines

1. Parallel wire (balanced) line

2. Coaxial (unbalanced)-line



Outer casing

Outer conductor

/ Inner conductor
Conductors /

'/] e '
‘ Dielectric

Outer casing

(a) Parallel wire (balanced) line (b) Coaxial (unbalanced) line

Transmission lines




Transmission Line as Cascaded T sections

To study the behaviour of transmission line, a transmission can be considered to be
made up of a number of identical symmetrical T sections connected in series

If the last section is terminated with its characteristic impedance, the input
impedance at the first section is Z,
Each section is terminated by the input impedance of the following section
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A line of cascaded T sections



The characteristic impedance for a T section is

Zy_
Zyr = Z,Z, 1+Z—Z-,:

If ‘n” number of T sections are cascaded and if the sending and receiving currents
are I and I respectively, then
Ig = Iz e™

where 7y is the propagation constant for one T section
Y = a+jp

| Z Z Z
Y = La+jB = e o =1 =1
e e 1*222‘“\/22(“‘422)




One T section representing an incremental length Ax of the line has
a series impedance Z, = Z Ax

1
Y Ax

The characteristic impedance of any small T section is that of the line as a whole

& Zl
Z’0= 2122 1+.4_'_Z—-2-

Substituting the values of Z yand Z,,

_ Z Ax ZAx Y Ax
Zo_— Ay 1 + 4
2
=\/ (H_ZY(Ax) )

4

shunt impedance Z, =

<IN =<



If Ax tends to zero, then Z, becomes

Zo= xr

Z Z Z Z: \3
1= = — (1+—'—)2
Zs 47, Z, 427,

By the binomial theorem,

21§ reetil s ol Jipadififid L [l s
Zs 42, ) -~ "\ Z, 2 \4z,)78\4z,) "

Substituting this value in ¢’ equation,
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=1+ 22 2 Z2 8 Z2 128 Z2 ......

1
Y Ax

When applied to the incremental length of line Ax, then Z, = Z Ax, Z, =

and propagation constant becomes y Ax,

e = 1 +.[ZY Ax+2(\/ ZY )? (Ax)?+ 8(\/ ZY ) (Ax)- 8(\/ ZY ) (Ax)



Ax ¥
Series expansion for an exponential e"** is

2 gAxE i gsz

e’d* = 1 +yAx + 1 SRR T

Equating the above two expressions,

([ ZY 2)2 (axp  (ZY 83 (Ax) |
Y2 (Ax)? +ﬁi6é£l3. &

= YAx + 5

Y AX+

......

If Ax tends to zero then,

y=\/ZY



four parameters resistance (R), inductance (L), capacitance (C) and conductance (G),

all distributed along the lines are known as distributed parameters. The equivalent
circuit diagram of transmission line is shown in Fig.2.3.




The four line parameters resistance (R),

inductance
conductance (G) are also known as primary cons 0 Stpaalinnes (C) and.

nstants of the tmmmsslon lim:

Inductance (L) is defined as the loop inductance per unit length of the transmission
line. It is measured in Henries/km.

Capacitance (C) is defined as the shunt capacitance per unit length between the
two transmission lines. It is measured in Farads/km.

Conductance (G) is defined as the shunt conductance per unit length between the
two transmission lines. It is measured in mhos/km.



Transmission Line Equation — General Solution
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Equivalent circuit of T section of Transmission line



The parameters R, L, G and C are distributed throughout the transmission line. The
constants of an incremental length dx of a line are shown in Fig.2.4. The series
impedance per unit length and shunt admittance per unit length are given by

Z = R+joL
Y = G+joC
Consider a T section of transmission line of length dx.

Let V + dV be the voltage
I + dI be the current at one end of T section

Let V be the voltage and 1 be the current at the other end of this section
The series impedance of a small section dx is (R + jLw) dx
The shunt admittanice of this section dx is (G + jCw) dx



The voltage drop across the series impedance of T sec!aons te the pdtmtial
difference between the two ends of T section is - ~

V+dV-V = I(R+joL)dx
dV = I (R+joL)dx

dV
av. .. (21
7 = IR+jol) . (2.1)
dV

5 =12

The current difference between the two ends of T section is due to the voltage drop
across the shunt admittance.

[+dl-1 = V(G+joC)dx
dl = V(G+joC)dx



dl

iz - V(G+joC) ' ... (2.2)
I
dx vY AV
Differentiating equation (2.1) w.r.t. ‘x’, dx I (R+joL)
d?V dl

e - R+jol) o
Substituting the value of g'JI; in the above equation

v
dx?

Differentiating equation (2.2) w.r.t. ‘x’

= (R+joL)(G+joC)V veo (2.3)



a1 dV
e = (G+joC) 7

Substituting the value of % in the above equation

% ' .
de = Rtjol)(G+jeC)l . (24)

But propagation constant is given by
y = VR +joL) (G +jaC) =ZY
Substituting the value of ¥ in equation (2.3) and (2.4),

d*V
@ =TV

&1
dt = v21




The solutions of the above linear differential equations are

V=Ae"+B e ¥ ... (2.5)

I = Ce”"+De™™ ... (2.6)
where A, B, C and D are arbitrary constants
Differentiating the equation (2.5), w.r.t. ‘x’

dV
dx ~ Ave"-Bye™™
dVv

IZ = Aye”-Bye ™
= A\ZY NZV* _BAJZY V25 [ y=+ZY]



- a1/7 ﬁ"—B‘\/ e N2V s . @)

Similarly, differentiating the equation (2.6) w.r.t. ‘x’

dl
= Cye™ -Dye ™
dl

VY = Cye™-Dye™ ™
=C\/_?e Nz _DA\[ZY e V¥

V = CA /% emx-D‘\/'{{' e—\[Z_Yx .. (2.8)



Since the distance x is measured from the receiving end of the transmission line,
x=0, . I=1I
V =V,
= Ry
where I is the current in the receiving end of line
Vy, is the voltage across the receiving end of the lines

Z,, is the impedance of receiving end
Substituting this condition in equations (2.5), (2.6), (2. 7) and (2.8).

Ve = AtHB . (2.9)
[, = C+D ... (2.10)






C+D ='31C'(A—B)
Cx+Dx = A-B

A-B=Cx+Dx ... (2.13)
Similarly, equation (2.12) becomes,
Vg = Cx-Dx
But Vp = A+B
A+B = Cx-Dx ... (2.14)
A-B = Cx+Dx | vor (2.13)
Adding the equations (2.13) and (2.14),
2A = 2Cx

A=Cx



Similarly subtracting the equation (2.13) from equation (2.14),

2B = -2Dx
B=-Dx
Substituting the values of A and B in the following equations
Vg = A+B
= Cx-Dx

But I = C+D
Igx = Cx+Dx ... (2.15)
Ve = Cx-Dx ... (2.16)

Adding the equations (2.15) and (2.16),
2Cx = Iox+V,
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.. (2.18)



.. (2.19)

- (220)



The characteristic impedance is defined as

. V4
[‘o - -"Y.

R +joL
- \/G+ij .. (2.21)

Substituting the value of Z, in equations (2.19), (2.20), (2.17) and (2.18),
Vi Iy Z

A =
A=

2
Vr
2 22, 0
Vr
A=-5'

1 + 5= .. (2.2
Ze | (2.22)



i k_[Z
2 "2 VY
Ve Vi
2 "2z, %
Vr Z,
N
Iz Y Y
2t \/'Z
_I_g_.+lazn
2 * 2z
Ip Zy
3 [1e2]

.. (2.23)

[ Va=1RZ;]

. (224)
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Substituting the values of A, B, C and D in equations (2.5) and (2.6), the solution
of the differential equations are

/ ,
v (1 +§2) N5y Y e
JR "

7
s (108) o i (1) v o



V Ve Z \Y V., Z
V = _B. e\fZ—Yx +.§5_£ e\ﬁ-‘?x +....2_'5. e—mx__iﬂ _Z_:.e-mx
l""""" \JZY x +I;ZR \I_Yx+_“; -ZYx _ .i.%‘;e— ZY x
0

VZVx o —\Z¥x NTY 5 _ TV 3
v = vy ) g (25 )

[ Va=IgZg] .
ﬁx —A\[ZY V \I_Yx_ —VZY x < vV ?
I=I"( -;e )"'-25( "f__")d['-'la‘—&]

0 Zr

Then equations can be written in terms of hyperbolic functions.
V = Vg cosh\[ZY x+ Iz Z sinh \ZY x .. (2.30)

Vv
[ = I coshA\[ZY x + 'z'f' sinh\ZY x e (231)



These are the equations for voltage and current of a transmission line at any
distance ‘x’ from the receiving end of transmission line.

The equations for voltage and current at the sending send of a transmission line of
length ¢/’ are given by

Vg = Vg cosh\[ZY [ + Z sinh \[ZY ['.‘ !3'-2-:]
¢ = Ipcosh\[ZY [ + % sinh\ZY / [+ Vi = Ir Zg]
Vg = VR[cosh\/ ZY 1+ZR- sinhf ZY 1 ] ... (2.32)

I = I [cosh 7Y [ + == smh‘\/ ZY | ] ... (2.33)



Physical Significance of the Equation-Infinite Line

Input impedance:

The equations for voltage and current at the sending end of a transmission line of
length ‘/’ are given by

Vg = VR(cosh ZY | + 57 = smh‘\/ 7Y | ) vv s (2:32)

I = I (cosh\/ ZY l+-2':-3 sinh\[ ZY I ) . (2.33)

The input impedance of the transmission line is,



\
(cosh\/ZY 2~ smhm 1}
I (cosh\/ ZY l+"z': sinh\/ ZY l)

Z
Ig Zg [cosh VZY | + --‘-’- sinh \/ ZY 1]
IR(cosh\/ Y I+"'— smh\/ ZY 1]

ZO(ZRcosh\/ZYl+Zosmh\/ZY l) -
= -—y - _ )
(Zycosh~[ZY [ + Zg sinh '\/ ZY ) - (2.34)

S



Let \/ZY =

The input impedance of the line is

Zg coshyl+ Z, sinh y]
Ls = Zo Z,cosh yl + Zg sinh y/

Zg + Zytanh vl
or e = 1
. 01 Z,+ Zg tanhyl

In a different form

i Zy v
S ZR







The input impedance of the transmission line is given by,

7. = ~S_7 \Zg* 2o [+ Ve =1Ig Zg]... (2.37)
S I 0 em’_rzk-zo) V! < VRT IR &R)eee s
_ \Zr * Zo

.. (2.38)




If the line is terminated with its characteristic impedance i.e., Zg = L then the
input impedance becomes equal to its characteristic impedance.
Zs = Z,
The input impedance of an infinite line is determined by letting [ — o
Zs = Z,
[t K = 2220
Lpt+Zy’
7, = 7, | 2K
S O_QYI—KQ-YI_J




Wavelength and Velocity of Propagation

The propagation constant (y) and characteristic impedance (Z,) are called
secondary constants of a transmission line.
Propagation constant is usually a complex quantity

Yy = at+jp

where o is the attenuation constant.
B is the phase shift.
y =\ZY
where Z = R+joL
Y = G+joC



The charzcteristic impedance of the transmission line is also a complex quantity.

Z
Z, = Y
7 = R+joL
° GrjoC
Propagation constant is Y = a+if

= /(R +joL) (G +jaC)

a+if = 4\ RG-w2LC +ja(LG + RC)
Squaring on both sides,

(a+jB)»2 = RG-w2LC + (LG + RC)




2-B2+2jap = RG-wn2LC+jo (LG+RC)
Equating real parts,

a?-B2 = RG-w?lC
a2 = B2+ RG-w2LC
Equating imaginary parts,
2 af

Squaring on both sides,

4 a2B2 = o2 (LG+RC)?
2
o2 B2 = - (LG +RC)

o (LG +RC)

Substituting the value of a2
2
(B2 +RG-02LC) B2 = - (LG +RCY



2
B+ B2 (RG - 02LC) — 5~ (LG+RC) = 0

The solution of the quadratic equation is

B = - (RG-02LC) + RG -2m2ng + 2 (LG + RC)?

By neglecting the negative values,

y - \/‘T_og,_g RG ++ (RG - 02LC + 02 (LG + RC)
= 2

Substituting the value of B

_ @LC—RG+\(RG-@ZCY +? (LG +RCP R - 2LC
+ - f

2 =
= 2




 RG-LC +[(RG—w?LCY + 0? (LG +RC)?
L .9 R N 3 I SRR

s O F

\/ RG — 0?LC +1 (RG — @?LC? + 02 (LG + RC)*

For a perfect transmission line R =0and G=0,
Bz = o2LC

B = o+ LC
Velocity: |
The velocity of propagation is given by,

v = Af

A
=27tf'2";["



N} 27

V=% ['.'B=Tanda)=21tf]
Substituting the value of B = ® \/ LC
y = =
o LC

1
v —
‘\/ LC
This is the velocity of propagation for an ideal line.

Wavelength:
The distance travelled by the wave along -the line while the phase angle i

changing through 27 radians is called wavelength.

BA = 2n
k=='2£ or X=K
[had: s 4 f



Waveform Distortion

The received waveform will not be identical with the input waveform at the
sending end

This variation is known as distortion
1. Frequency Distortion

2. Delay or Phase Distortion

Frequency Distortion: A complex (voice) voltage transmitted on a transmission
line will not be attenuated equally and the received waveform will not be identical
with the input waveform at the transmitting end. This variation is known as frequency
distortion.

The attenuation constant is given by
. _\/ RG — 0?LC +/(RG — o?LCY + @2 (LG + CR)?
2

a 1s a function of frequency and therefore the line will introduce frequency
distortion.

-



Delay or Phase Distortion: For an applied voice-voltage wave the received
waveform may not be identical with the input waveform at the sending end, since

some frequency components will be delayed more than those of other frequencies.
This phenomenon is known as delay or phase distortion.

The phase constant is

- _\/ @?LC —RG +/(RG — 0?LCY + o (LG + CR)?
= 2

B is not a constant multiplied by ® and therefore the line will introduce delay
distortion.



The Distortion Less Line

If a line is to have neither frequency nor delay distortion, then attenuation factor g
and the velocity of propagation v cannot be functions of frequency.

If v=£o"

B

B must be a direct function of frequency

g = _\/ @?LC — RG +\(RG — 0?LC)? + 0? (LG + CRY
- 2

For B to be a direct function of frequency, the term




(RG - @?LC)? + o? (LG + CR)? must be equal to (RG + w2 LC)?

R/zé2 + m4}/Cz -2 2ELCRG + @212G?* + @2C2R2+ 2 mz}zéRG

= RYG? + o /iz C2+2 w2 LCRG
?12G2+ 02 C2R? = 2 @2LCRG
@?L2G? + 02C2R2 -2 02 LCRG

= 0

(LG-CR)2 = 0
LG = CR
R _G
L ~ C

This is the condition for distortionless line.



Propagation constant y = \/ (R +joL) (G +jC)

= L(%+}0))C(%+]m)
= ‘\/EE (%+j(o)(%+j(o)
R G
But L C

2LC-RG +RG + 02L.C
Then B = ‘\/ - —‘24_"—(0



I
4
[\ @)
ol
-
@)

B = 0+/LC
Velocity of propagation is y = %)'
1
vV = T

This is the same velocity for all frequencies, thus eliminating delay distortion



Attenuation factor

& ,\/RG-a)zLC+\[(RG—m2LC)2+m2 (LG + CRP
- 2

To make o is independent of frequency, the term (RG — w? LC)?2 + w? (LG + CR)?
is forced to be equal to (RG + @2 LC)2.

(LG-CRy = 0
LG = CR
L _R
C G

This will make o and the velocity independent of frequency simultaneously. To
achieve this condition, it requires a very large value of L, since G is small.



Z 2 2
The attenuation factor o ‘\/ RG-?LC+ ML___RG + @2 LCYR )~

_\/ RG - m21C+RG+m2LC

7RG
N 2

o = G

It is independent of frequency, thus eliminating frequency distortion on the line.



The characteristic impedance Z, is given by

7 = R+J(DL
0 G+}(0C
( ﬂ
+j(1)
B B, 2 for distortionless line
ut [ = C or distortio .
L
tZy =[G

It is purely real and is independent of frequency



Loading of Lines

e To achieve distortion less condition = increase L/C ratio

* Increasing inductance by inserting inductances in series with the line
is termed as loading such lines are called as loaded lines

* Lumped inductors = loading coils
Types of loading

(a) Lumped loading

(b) Continuous loading

(c) Patch loading



Unloaded

[

Lumped loaded

(c)

Attenuation

/-__ Continuously loaded

>

Frequency (f)

Comparison of loaded and unloaded cable characteristics



Inductance loading of Telephone cables

Consider an uniformly loaded cable with G = 0. Then,
Z = R+joL

Y = joC

7 = \R2+ (Lo) tan"(%')

T R
\/ R2 + (Lw) 5 tan Lo




Propagation constant y = \/ 7Y

=‘\/'\/R2+(L03)2 %—tan-'i%)‘ [coC'zziJ

R
‘\/ oCy R2+(Lo)? | n —tan {

2
- '\/(a)C) (Lm)'\/ 1 +(L1§))2 z_2 tan—lLL:J—

4 2
- oyiE N[ 1+(R ) [E- LR

2 "2y




Since R is small with respect to Lo, the term (i%)_) is neglected.

_ = 1 R
n | R
e - ..T..I.:. .1.. -, _B_ )
COS COS 2 - 2 tan Lo
w— < (-1— t -1 .-B—- )
= Siln 2 an Lo

For small angle, sin@ ~ tanB =0



R

cos 6 > Lo
- : 1 R
Similarly, sin@ = sm(‘g‘ ) tan! _L(D ) =1

® \f LC (cos©O +; sin 0)

R
LC (21_. +])

R4/ LC ,
y = L +10)‘\/LC

- R\[§ +jevic

Propagation constant y




. R /C
;. Attenuation constant o = 5 L

Phase-shift 3

|
e
-
@

Velocity of propagation v

Campbell’s Equation

The series arm of T section including loading coil is given by

_Z_‘_l:__zc Zl
» — 2 ™73
Z,

where 5 is the series arm of T section




/ Loading coils \

------ RIS ——— AW AN —— T - ===~
i x| om iz
2 2 2, 2

N

Equivalent T section for part of a line between two lumped loading coils

Z, yl
5 = Z, tanh 7
Zl' Zc ﬂ

where / is the distance between two loading coils



The shunt arm Z, of the equivalent T section is
Z

0

22 = Sinhql
For loaded T section 70
coshy'l = 1 + Elz
Z
e y!
o 5 +Z,tanh >
ZO
sinh y/
cosh y/—1

Y _
Buttanh2 yinh v



Substituting this value in above equation

7 —~

S 1 7 cos.hll 1

2 °© ginhyl
s.coshy'l = 1 + 7

sinh y/

L
-igsinh vl + Z,(coshyl-1)
1 + 7

)

ZC
\ TR

ZC
coshy'l = 57 sinh y/ + coshy!/

0

sinhyl + coshyl — 1




Reflection on a line not terminated In Z,

When the load impedance is not equal to the characteristic impedance of a transmission line,
reflection takes place, i.e., Z, # Z, , reflection occurs.
If a transmission line is not terminated in Z, , then part of the wave is reflected back. The
reflection is maximum when the line is open circuit or short circuit.

From the general solution of a transmission line, the equations for voltage and current are

expressed as: )
E= ER(ZR +ZO) els +[ZR ""ZO ]e—ys

2Zp Zp+Z
1,= IR(ZR +Zo) eys_ ZR_ZO e_YS
27, ] Zp+Z,

where s--> is the distance measured from the receiving end.



The first component of E or | that varies exponentially with +s is
called the incident wave which flows from the sending end to the
receiving end

The second term, varying with e™7°, must represent a wave of
voltage or current progressing from the receiving end towards the
sending end is called reflected wave

In case of an infinite line (S = Q0) of for Z, = Z, the second term of
the equation becomes zero and the reflected wave is absent

When Zp = Z,, the waves travel smoothly down the line and the
energy is absorbed in the Z, load without setting up of a reflected
wave. Such a line is called a smooth line



Incident voltage component is given by

Z
E, [I + —-—O»J
2Z, 2
Reflected voltage component is given by,
E2=ER(ZR —ZO)e—'ysz ZR e Y
27 4 2
If Zg =0 which represents an open circuited line,
EI =_E_R_..eys S EZ =_E_‘.B..e_ys



Ats=0,both E and E, have an amplitude of E /2. Thus atthe receiving end, initial value of
the reflected wave is equal to incident voltage.

Open Circuit Open Circuit

Incident Wave
\/, _____ ‘\\ \B’é\, IG \\ ? 2. "// o

4 \\\ ,,' | ‘\l | | l/
" l \_‘---’.r \\\ ’//
Reflected

(i) For time instantt=0 (ii) For time instant t = 1/8 f

Voltage waves for an open-circuited line



Open Circuit

(iii) For time instant t = 2/8 f
Current waves for a open-circuited line

The two current waves are equal and of opposite phase:

l » Y .
[, =L e incident wave

Ig

reflected wave



Reflection Phenomenon: The quantity actually transmitted along the line is energy. This energy
is conveyed by the electric and magnetic fields traveling or guided along the line.

The energy conveyed in the electric field is

CE?

w,= joules/m?

The energy conveyed in the magnetic field is

1
W =5 LI* joules/m’

L
For such a line, R<<oL, G=0, Zo:\/g



C=—
Z5
E=IZO
_CE®
2
_! _L__.E2
2 7§
1
:-__.__112_.]223
2 72
74 =-]2—L12=Wm

Thus W,=W, at all the points along the ideal line terminated in Z, (or) the electric field
energy equals the magnetic field energy.



Reflection coefficient

Reflection coefficient is defined as the ratio of the reflected voltage to the incident
voltage at the receiving end of the line.

_ Reflected voltage atload ~ Vg
~ Incident voltage atload ~ Vj

The equation for the voltage of a transmission line is

Ve@e*Z) [ .. (Ze=Z,) _.
. 27, [e |\ Ze7zZ, )

Vr (Zg +Z,) N Ve (Zr - Z,) -

- x
¥ 27, ¢ 2 Zq




The first term (e'™) represents incident wave, whereas the second term (e~ )
represents the reflected wave. The ratio of amplitude of the reflected wave voltage to
the amplitude of the incident wave voltage is nothing but reflection coefficient.

Vr (Zgr - %))
2 Zs 2
AT ety WrtZ
2 7Zq

ZR - Zo

~ ZytZ,

K

It is also defined as in terms of the ratio of the reflected current to the incident

current. But it is negative.
~ Reflected current at load _ Ir

Incident current at load I




Reflection Factor and Reflection Loss

Zg f——--mmmmemneeee-

Transmission line with voltage source V¢ and impedance Z

current ratio of the transformer is given by I,

ZS
I, Zn



The current through the source is
Vs
- 27

The current flow in the secondary of the transformer

/ Zg
L' =1 Z;
VvV |4
- 27 Zy
VS

N A2

I




The current in the load impedance Z,

A
1Ll =1Z757

The ratio of the current actually flowing in the load to that which might flow under
matched condition is known as reflection factor.

| Vs |

| Zs + Zy |
| Vg |

124/ Zs Zy |

N2
ZS+ZR

I

I,

k =




The reflection loss is the reciprocal of the reflection factor in nepers or dB

Reflection loss = In 71('

g Ls+Zy
=201 I S
Rt PN A A




Input Impedance and Transfer Impedance of
Transmission Line

Input impedance :

The equations for voltage and current at the sending end of a transmission line of
length ‘I’ are given by

Vg VR(cosh\/ ZY | + = smh\/ 7Y | )
Is = Ix (cosh\/ 7Y l+ smh\/ ZY | )

The input impedance of the transmission line is,



Vr (cosh \ZY | + 7= smh \ ZY l

Zg = \
Ir (cosh\/ Y l+ smh\/ ZY |

)

Ir Zr (qosh ZY | + 75 = smh\/ Y 1]

z
IR(cosh\/ ZY z+-z-‘-;- sinh[ ZY l]

Zy (Zg cosh \ ZY !+ Z,sinh \ZY 1)
2 (Zg cosh'\/ ZY [ +Zg sinh\/ ZY )




Let \/ 7Y

Y

The input impedance of the line is

Zg =
Zg =
In a different form

" Zgp coshyl+Zysinhyl
 Zgcoshyl+Zg sinhyl

-ZR+ZOtanhylﬂ
_ZO+ZRtanh'YI_

Rl

Zo )
1_.———

R
| EB"\
-~ Zy )

e—'\’ZYl
e—'\lZYl




The input impedance of the transmission line is given by,

— )

_YB[(ZR"'ZO) NIV +(ZRZ Zo ,—VIY!

2 . ZR R -
!_B_ Zp +Zy ZY I ZO"ZR\ e—\lzw j

2 Z, )° Z, |

Zo +7Z Zon—-2

—_R R __~0 NZY! R_<0| - zw]
( 2 )( Zg )[.e +(ZR+Zo]e
I_R Zr +Zg ZY | Zr—2Zo) _ zw]
2 ZO ke - ZR+ZE) €.

H

2 ZYI_I_(ZR_ZO\ e-\lzw
\Zr*+ 2y, e Ve =1 Zg]
S o Vo =
NZYI _ Zg=Zy" e~ VZYI ROR
\Zr 2o _



Let VZY = v

The input impedance of the transmission line is,

_ Fo e % _
et! + Zr=Zo e~ 1!
- \Zr +Zy )
_ \Zrt 2y J

If the line is terminatec with its characteristic impedance ie., Zp = Z,, then the

input impedance becomes equal to its characteristic impedance.
ZS = ZO

The input impedance of an infinite line is determined by letting / — oo
ZS - ZO



Lr-1,

If K = Ze+Zy then
7. =7 o' +Ke V!
> | OleY —Ke 7! |

Transfer impedance :

the ratio of voltage at the sending end (transmitted voltage) to the current at the
receiving end (received current).

VR (Zp +Z
Vg = R (2R + Zo) (e“ +Ke"”)
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 IR(Zr+Zy)

[+ VR=1Ip Zg]

e V! )

Vs = 2 "' +Ke ')
Vg Zp+Z, _
Zr = —I-; - 5 (e” +Ke ‘H)
Rt Zo
Znt+Z Z
=( - O)e” +( ;

Zy = Zgcoshyl + Zjsinhy!

)z

‘Z")e—ﬂ

2
e’ —e V!
.2

)



Open Circuited and Short Circuited Lines

The expressions for voltage and current at the sending end of a transmission line of

length ‘I’ are given by

\'2 VR[cosh\/—l"' smh\/—1
I, = IR[cosh\/Z‘i—(H'z'&sinh\/ZYl

The input impedance of a transmission line is given by




Z, .
Vi | cosh \ZY 1+ 2‘; sinh ‘\/ZY /

Z
Ig| cosh\VZY I+ 7~ sinh\|ZY /
()

Vi Z, (Zg coshyl+ Z  sinh yl)

I Zg (Z,coshyl+ Zg sinh yl)

Zp coshyl+ Z  sinh yl
°\ Z, cosh y/ + Zg sinh y/

> =3 Zp cosh yl + Z_ sinh y!
S “0 |\ Z,coshyl+Z, sinh yl



If short circuited, the receiving end impedance is zero.

ie, Zp = 0
Z, sinh y/
Short circuited impedance
Z, = Z, tanhyl

If open circuited, the receiving end impedance is infinite.

ie., Zp = ©



Input impedance of transmission line can be written as

Applying Z, =

Then Z,

.
coshyl + 7 = sinh y!

R

° | Z,
| g

= cosh y/ + sinh vl

- [coshxl]
° [ sinhy/

The open circuited impedance

Zoc =

Z, coth y/




By multiplying open circuited impedance and short circuited impedances
L, L, = Z2tanhyl cothyl

= 72
The characteristic impedance is given by
Zo - \/ Zac Zsc
By dividing short circuited impedance by open circuited impedance
Z, _ Z tanhyl _ tanh y/
Z,, Z,cothyl
Z-S'C
tanh y/ = 7
Ly
y/ = tanh-! 7



Problems

A lossless line has a characteristic impedance of 400 ohms. Determine the standing
wave ratio of the receiving end impedance is 800 + j0.0 ohms. [Nov./Dec. 2010]

Given: Z =400 ohms, Z, =800 + 0.0 ohms

i) Reflection coefficient
Zp—Z, _800-400 _ 400

1
= Zp+Z, 800+400 1200 3

ii) Standing wave ratio

vk _ 1413 _,
§=— = =
-k 1-1/3




A transmission line has the following unit length parameters. L = 0.1 pH; R = 5
ohms, G = 0.01 mho, C = 300 PF. Calculate the characteristic impedance and propa-
gation constant at S00 MHz. [November/December 2010]

Ans:
R=50hms, L=0.1 uH, C=300PF, G=0.01 mho
f =500 MHz
Z=R+joL=5+j2n x 500 x 10°) (0.1 x 107°)
Z=5+j314.15
=314.199/89.088°
Y=G +joC
=0.01 +j(2n x 500 x 10® x 300 x 107'?)
Y=0.01+;0.9424
=0.9425/89.39°




Z
Characteristic impedance Z = \/;

314.199 £89.088°
\ 0.9425.,89.39°

Z = 18.281/-0.151°Q

Propagation constant Y = \/ZY

= /314.199/ 89.088 x 0.9425 /89.39°

y = 17.2085/89.239°




The characteristic impedance of a uniform transmission line is 2309.6 ohms at a
frequency of 800 MHz. At this frequency the propagation constant is
0.054 (0.0366 + j0.99). Determine R and L. [November/December 2010]

Given: Z =2309.6 ohms, f=800 x 10° Hz

vy =0.054 (0.0366 + j0.99) Jol =j123.47
©=21f =21 x 800 x 10° oL =123.47
123.4
R+joL =2y [ = 3.47 :
27 x800x%x10

= (2309.6) (0.054 (0.0366 +j0.99)) .
= 0.0245 pH
R +joL =456+ j123 .47 0245 pH/km

R=4.56 Q/km



Find the attenuation and phase shift constant of a wave propagating along the line
whose propagation constant is 1.048 10/ 88.8°. [November/December 2008]

y=1.048 x 10~/ 88.8°
y=a+/B

=2.19 x 10°+,1.048 x 10~
a=2.19 x 10~ Nepers/m
B=1.048 x 10~ radians/m



A transmission line has Zy=7452-12°Q and 1s terminated in Z,=100 Q.

Calculate the reflection loss in db?

Reflection Factor k£ =

Zp+2Z,

2,/745x100

745+100

= 0.645

]

Reflection Loss = 20log—

=20 log

&

0.645

=3.7751 dB

[April/May 2011]



Calculate the characteristic impedance of a transmission line if the following mea-

surements have been made on the line. Z, =550 /- 60° Q and Z, = 500 , 30°€2.
[November/December 2007]

Z,= Zoc - Zgc

N \/@4—600 500 £30°

=534.404 / «@“
9"




If the reflection coefficient of a line is 0.3[ — 66°. Calculate the standing wave ratio.

[May/June 2009]

Given: K=03 - 66°

=|K] £¢

Standing wave ratio

_I+| K|

S =SWR =17 %]
_1+03 1.3
1-03 0.7

=1.8571



A generator of 1 ¥, 1 KHz supplies power to a 100 km long
having following constants.

R = 10.4 (Ykm L = 0.00367 H/km

G =08 x 10 mho/km C =0.00835 x 10 F/km
Calculate Z, attenuation constant o, phase constant, voltage and power.

line terminated in Z, and

[Nov./Dec. 2006], [May/June 2005]
(1) The line constants

Z=R+ joL = 10445 2x3mx Px 600347
=10.4+723.0 =25.29 £66°
Y=G+jﬁ)c - 0.3 X\¢ b 4 YR B3y X \0> X O 00838 X

=0.8x107% + j52.5x107
=52.6x107% £90°



(ii) Characteristic Impedance Z_

o
zonZ =J 222400 _692 £—12° ohms
¥ \52.6x10° £90°

(iii) Propagation constant y

l
66 + 90

Y=NZY =252 £66° x52.6x107 £90° = 0.03

Y =0.0363 £78°
v=0.007928 + j0.03553 = o+ j

where o is the attenuation constant,

B is the phase constant.

a = 0.007928 nepers/km
B=0.0355 rad/km



(iv) Wavelength (1)
2n 27

A=—=
B 0.03553
(v) Velocity of Propagation

o 2nxIx10° _ 6280

V= — =

B~ 003553 0.0355

(vi) Sending Current:
Since the line is terminated in Z, then Z; = Z,

=176.84=177 km

=177000 km/sec.

E, 120°
I

== = -0.00145212° 4
s Zy 692£-12°

=1.45x 107> £12° n)



(vii) Received Current
1

Ip
— —71
l,= 1 e

- IS e-(ll e—jB,

o =0.00755 neper/km
B=0.0355 rad/km

[ =100 km.
[,=0.00145 £12°x e~ 0773 x ¢=/0-0355x100

=0.00145 £12° x¢ 755 x ¢/

¢~J33 1s equivalent to an angle of —3.55 radians or —203.8 deg



180
[Radians into degrees —3.55 % — = -230.8 ]

I,=0.00145 £12°xe " £ -203.8°
=0.00145 £12°x 0.472 £ -203.8°

=0.000685 [~ 191.8° amperes

(viii) Received voltage, Ep=1,-Z,

E, = 0.000685 £ -191.8x692 £ —12°
Ep=0.474£-203.8° volts



(ix) The received power is given by
PR - ER IR COSG

O is the angle between Ej and 1,

0=203.8°-191.8°
0=12°
Pp =0.474x0.000685x cos 12°

=318x107% watts



A generator of 1 volt,1000 cycles, supplies power to a 100 mile open wire line
terminated in 200 ohms resistance. The line parameters are:

R = 10.4 ohms per mile
L = 0.00367 Henry per mile

G =038 x 10° mho per mile
C = 0.00835 pf per mile

Calculate the Reflection coefficient, Input impedance, The i/p power, The o/p power,
Transmission efficiency.

[April/May 2011], [May 2009], [Nov./Dec. 2009], [Nov. 2005|



Ans: The line constant are computed in the previous problem
Z=25.2 766° ohms per mile.

Y=52.6x10"° ~£+90° mho per mile.
Z,=692 £—12° ohms

y=0.0363  78°
o = 0.007535 neper per mile.

B =0.0355 radians per mile.
o/ =0.755 neper

B/ = 3.55 radians = 203.8°



(i) The reflection coefficient K
Zp—-Z, _200—6924—]20
Zp+Zy 200+6922—-12°

K

200+ jO—676.87 + j143.87
200+ /0 +676.87 — j143.87
 —476.87 + j143.87

~ 876.87 - j143.87
4980916321

 888.59./-9.317

K

=0.560 £172.8°




(ii) The input impedence

_7 eV +Ke™"
“=% o —Ke T
et =g . o/P = o075 £203.8° =2.12.£203.8°
eV =g P =073 £-203.8° =0.472 £-203.8

Z,=692/-12°

=692Z-—120{

" 512.,203.8° +0.558.2172.8° x 0.472 £ — 203.8°

12.12.£203.8° - 0.558 1 72.8°x0.472 £ —203.8°

1.975 £210°
2.285£198.5°



=692 /-12°x0.865/11.5°

L

Z,=597.£0.5°

(ii1) The input current

[ =2 0 _000167.,+0.5° amps
*TZ. 597./-0.5°

A
(iv) The received current /,

’ 27,

Ke )



4

o
000167205 ="RE88I9L =959 ) 45 /198 50y

1384 £-12°
_231/£-115°

2030 /(899 —\ I | !

(V) The load voltage E, {«b\b\ \ ) (J] ‘ b

Ep=IrZk =0.00113/-200)5° x200
N
=0.226 00.5° )
Z@S d SRR

Ig




(vi) The power delivered to the load
P,=I%R
=0.00113%x200
Pp =0.000255 watt

(vii) The power input to the line
P,=E I cosO

where 0 is the angle between E_ and [

=1.0 x0.00167 c0s 0.5°
P, =0.00167 watt



(viii) Efficiency of the transmission line

n=2R 4100%
PS

~0.000255

= x100%
0.00167

n=15.2%



A transmission line has the following parameters per km.
R=15Q, C=15uF, L=1mH, G =1 umho.

Find the additional inductance to give distortionless transmission. Calculate a and 3
for this inductance added transmission line. [Nov./Dec. 2007]

For the distortionless line,

RC=LG
RC 15x5x107°

L =—-= =225 H
G 1x107°

So that additional inductance required is
225-1x107>=224.999 H



For the loaded line:

Y

__\/15><10‘6 ]xlO'(’\/ 225
2\ 225 2 \15x107°
o = 0.00387 N/km

B=/L'C

3=6.283x10 3 \[225x15x1078

B= 365 rad/km




A transmission line operating at 500 MHz has Z, = 80Q2, a = 0.04 Nepers/m, B = 1.5
rad/m. Find the line parameters series resistance (R{)/m), sereis inductance
(L H/m), shunt conductance (G mho/m) and capacitance between conductors
(C F/m). [May/June 2007]

f=500MHz, Z = 80 QQ, a =0.04 Nepers/m, 3 =1.5 rad/m
The series impedance of a line is given by
Z=R+joL=1Z 1y
y=o +jB3=0.04+,1.5=1.5 ~88.5°
R+joL=2Zy=80 ,0°x 1.5 ,88.5°
=120 , 88.5°
R+ jwL=3.14 +;119.96



Equating real and imaginary parts,

R=3.140

wl =119.96
11996 _ 119.96 119.96

L T 22500x10° 3142x10°

L=38.12 x 10° H/m.

The shunt admittance of a line is given by,

Y =G+ joC =L
g



_1.5./88.5°
80.£0°
=0.01875 £88.5°

G+ joC=49x10"% + j0.01874

Equating real and imaginary parts,

IQ =0.49x 107> mho/m I

oC=0.01874
0.01874 _0.01874
C= - 6
@ 3142x10

C=596x10""2F/m.




UNIT 11
HIGH FREQUENCY TRANSMISSION LINES

Transmission line equations at radio frequencies - Line
of Zero dissipation - Voltage and current on the
dissipation-less line, Standing Waves, Nodes, Standing
Wave Ratio - Input impedance of the dissipation-less
line - Open and short circuited lines - Power and
impedance measurement on lines - Reflection losses -
Measurement of VSWR and wavelength



Introduction

* When a line, either open-wire or coaxial, I1s used at frequencies of a
Mega Hertz or more, certain approximations may be employed leading
to simplified analysis of line performance

The assumptions are usually made are:

1. At very high frequency, the skin effect is very considerable so that
currents may be assumed as flowing on conductor surfaces, internal
Inductance then being zero

2. Due to skin effect, resistance R increases with ./f. But the line
reactance oL Increases directly with frequency f. hence wL > R

3. The lines are well enough constructed that G may be considered
Zero



Skin effect:

Skin effect Is the tendency of an alternating current(AC) to
become distributed within a conductor such that the current density Is
largest near the surface of the conductor, and decreases with greater
depths in the conductor

Parameters of the open wire line at high frequencies

Due to skin effect the current is considered as flowing essentially on the surface of the
conductor in a skin of very small depth. Hence the internal inductance and internal flux are reduced

nearly to zero.
The inductance of an open wire line is given by,

K d
—10-7 —-—+4]n-——-]
L=10 [HV i



The first term on the right hand side of the above expression represents internal inductance of
the line due to internal flux linkages in the conductors and is zero for a open wire line.

Hence the inductance of the open wire line is \

d
L=4x 107In - henrys/m

d
=921 x 107 log,, - henrys/m

e -_—

a — radius of conductor

d — distance between conductors Cross section of parallel wires



The value of capacitance of a line is not affected by skin effect or frequency and hence the
capacitance of a open wire line with air dielectric is given by,

TE,E

lné

a
where ¢ = Permittivity of free space = 8.85 x 10~'2 f/m,

r

C=

farads/m

g, =1 forair

27.7
C= 4 Huf/m
In—
a
12.07
C= THRSIm



The‘effective thickness of the surface layer of current is given by,

1
o= W meters

where p = conductor permeability = 4 x 107 henry/m for copper.

o = conductivity of conductor = 5.75 x 10’ mho/m for copper.

The effective thickness is then given by,

0.0664
d= '_\/—7' (for Copper).



The resistance of a round conductor of radius ‘a’ meters to direct current is inversely
proportional to the area as,

R -k
2
na
where R = pL_k _ k
A A nd
While that of a round conductor with alternating current flowing in a skin of thickness 0 is.
_ k
% 2mad

Therefore the ratio of resistance to alternating current to resistance to direct current is given

by,



For copper

. 7.53a\/7 '
Ry

From the above equation it is clear that for the large radius conductors, increase in resistance
with increasing frequency is considerably large as compared to that of the conductor of small

radius.



PARAMETERS OF THE COAXIAL LINE AT HIGH FREQUENCIES

Because of the skin effect, the current flows on the outer surface of the inner conductor and
the inner surface of the outer conductor.

Outer
Conductor
Sheath

Cross Saction of a coaxlal cable



For a coaxial line the inductance is given by,

i d
L=107""g " (2 _p2)t ~ (22

b )
second term and third term represents flux linkages inside the inner and outer conductors,

Him

The skin effect eliminates flux linkages and hence the inductance of conxial line is given by,

b
L=2x 107 In - henrys/m

b
L =46 x 107 log,, p henrys/m



The capacitance of the coaxial line is not affected by the frequency.

2TE
C= 5 farads/m

In —
da
2NELE ... .
= c}; ~ farads/m ; € =8.854 x 10”2 f/m

In—
a

C = 55'5: = upf/m
i =
a




Due to skin effect resistance increases and the resistance of coaxial copper line is.

1
R =416 x 10° \/-f_[r;]mm

where a and b are the outer radius of the inner conductor and inner radius of the outer conductor
in meters respectively.

The ac resistance of the coaxial cable is derived as follows,

R - l e 1 = l |:l+l]
e 2madc 2nbdc 2ndcla b



The ac resistance per unit length of a copper conductor is given by,

]

21{0.0664

Jf
R =4.16 x 10° \/7[0

](5.75x107)

l
_+.—.
b

1

The dc resistance of a coaxial line is given by,

1|1

l

Rdc = TOo L..a2

4+

(c* -b%)

i

]Q/m

Q/m

¢ — outer radius outer conductor.



Line constants for zero dissipation

In general the line constants‘for a transmission line are:
Z=R+jolL
Y=G + joC

Z |R+joL
Characteristic impedance Z,= ||, =45 joC

Propagation constant Y= VZY = (R + joL)(G + joC)

Y =a +jp.

For a transmission of energy at high frequencies, ®L > > R
G=0



Z=joL, Y =joC
Since ®L>> R, G=0

Z = __7:_= --j—w—['—z‘/—{'-ohms
Y VJjoC C
/L
Z, = RO — E ohms

Using the inductance and capacitance a open wire line at high frequency, the value of
characteristic impedance of the open wire line can be found as,

27.7

d
L=4x 107In - h/m = Ind/q H/m

d

L d
R = \/'E‘ =120 In - ohms =276 log, - ohms



The characteristic impedance of the coaxial line can be computed as,

L=4.60 x 107 log,, b/a h/m L=2 % 107 In b/a h/m
24.14¢, J5.5€,
et loggb/a Htim " Inb/a Hpi/m
L 138 L 60
R, = C \/; logm b/a ohms R = E —‘\/—-é—r‘m; ohms

g, = 1 for air spaced lines



The propagation contant is given by,

Y=NVZY = [(+joL)(joC) =v/?e’LC = joIT

y=a+jB=joJLC
from which =0, B=w./1C radians/m

The velocity of propagation can be calculated as

® 0 ]
V._.__ w— = —
B~ oJLC JIC ™se°

Using the values of L and C for a open wire line.

V=3 x 108 m/sec = Velocity of open wire line is same as the velocity of light
is space.



For a coaxial cable, using the values of L and C,

3x108
V= T&:—_ m/sec = Velocity may be reduced due to the presence of a

dielectric other than air between the conductors.



Voltages and Currents on the Dissipation less Line

The voltage at any point distant s units from the receiving end of a transmission line is,

Ep(Zp+24y)
E= er+ Ke ¥
2z, ¢ )
For the line of zero dissipation, the attenuation constant o is zero and Z = R,
E R(Z Rt Zo)
E = e® + K e
2z, ( )

e _y wave progressing from the source towards the load

e® — reflected wave moving from the load back towards the source



<

= | (Zp + Ry)e™ +(—————Z” = )(Z/ Zy)e P

1

ZZR Z/R/+ ZO .
Eg Bs , ,~JBs jBs _ ,—JBs
= R | 7. +e ")+ Ry[e/P° —e V]
223[ g |
Eg ] (e}ﬁs + e—fﬁé‘) - (efﬂs _ e—JBS)
T e— ZR +J 0 .
5 2 2] )
E=FE,cos Bs +j I, R, sinPs
where ,H..—_.' &

R



Similarly for the current on the line

'IR(ZR’+ZO) (P — K e
27,
The current at any point on a dissipationless line is given by
Ig /Bs [ZR‘RO) ps Zp-2,
1-'""""'(Z+R)(e - € L Ly = K=2R"
2R, Gt Ky Zq +R, 0=Ry, ZhiZ.
Iy (e jbsy (&P + ¢~ /Ps)y

I
|
N
S
N



=1, cos Bs +j “"‘Bsin Bs

where ER = IR : ZR

['rom velocity of propagation equation,

T 21
Vz_(‘.).:[g-:ﬁ A=— (or) ===
B 4 B A
27 . 2ms
E=E, cos T +J I, R sin —
I=1, cos 2n";+j]';"Rsn g_n_q_
A R, A



Let us consider different conditions at the receiving end

(1) When the line is open circuited, then I, = 0. Then

the expression f; t
or volta curren
at a poin distance ‘s’ from the receiving end IS given B ond

by,
w=Eycos =— | | - JEr 2ms

sin —
Ry

Receiving End

Open circuited line R, = «



(2) If the line is short circuited at the receiving end then £, =0

. . 2T
E.=jI,R sin By
27S
Is( — IR CcOS —7\._

Receiving End

A 3A A SA 3\

2 4 4 2

&>

Short circuited line R, =0



3) When the line is terminated in an impedance Z, = R , the reflection coefficient and

reflected wave becomes zero. Receixing End
= ZR - ZO = 9 E
A= Z r+Zy 1
E=E,e"
I=1, e |

Line is terminated in an impedance R = R

The voltage and current distributions are represent by horizontal lines when

R,=R.



1
(4) When R, =3R, K= 5 there is a finite value of voltage (or) current at all points on the line

+» Receiving End
E

|

Line is terminated in an impedance, R =3R



Standing Waves: Nodes

The actual voltage at any point on a transmission line is the sum of the incident and the
reflected voltages at that point. It can be seen that the resultant total voltage appears to stand stil!
on the line, oscillating in magnitude with time but having fixed positions of maxima and minima.
Such a wave is known as a standing wave.

E+
W

\___{_& in i
— 0,
Standing waves on a dissipationless line terminated in a load not equal to R,

If a line is terminated in a load other than R, the distribution of voltage at a point along the line
consists of maximum and minimum values of voltage as shown in figure |



Standing waves on a line having open or short circuited terminations

If the line is either short circuited or open circuited at the receiving end, we get nodes and
antinodes in the voltage distribution as shown in figure
Nodes are the points of zero voltage or current (E = I = 0) in the standing wave
systems.

Antinodes or loops are points of maximum voltage or current.
A line terminated in R_has no standing wave and thus no nodes or loops and is called a

smooth line.



A 3n S5A

For open circuit, the voltage nodes occur at distances vy and so on from the

open end of the linc. Under the same conditions, the current nodes occur at a distance

0, L A, 3)' and so on for open termination.

2" Ty )
B T

W
>
w
E
N | >
>



A
For short circuit, these nodal points shift by a distance of 2

A
Voltage nodes occur at 0, 5 A and so on,

30 5A

A
t gy .
Current nodes occur at 17212 and so on



Standing Wave Ratio

The ratio of the maximum to minimum magnitudes of current or voltage on a line having
standing waves is called the standing wave ratio, S.

g Emax — Imaxv
B Emin ]min

Relationship between Standing Wave Ratio and Reflection Coefficient:

The voltage at any point s from the receiving end for zero dissipation transmission line is given

by’

E = ER(ZR +ZO) (ejﬂs + Kev"ﬂs)
27,




Reflection Coefficient K =|K] /¢ = |K] e

E= £r(Zp+2y) ejB"(HIKleﬂ’-e'szs)
27,
_ Er(Zr+2,) e /Ps (]+|K|ef(¢-238))
2Zp
ER(ZR +ZO)
2Z,

In equation the first term represents the voltage in the incident wave while the second
term represent the voltage in the reflected wave.

E=

e (1204 K| £¢ - 2Bs)

The voltage E at any point is the vector sum of the voltages in the incident and reflected
wave.



The l-naxima of voltage along the line occur at points at which the incident and the reflected
waves are in phase and add directly. When both the waves are in phase, their phase angles will b¢
the same. £

For E_, 0=¢—2Ps. -- Phase angles are same

Eo(Zp+2,))

E == 2;R = /™ (1.20+|K]| 20)
ER(Zr+4y)

Ew="" 2z €”[1+[K]

The voltage minima occur at points at which the reflected and incident wave are out of phase
hen the difference of angle of two waves is =.

For Emm’ n= ¢ - ZBS



_ En(Zr+2))

Emm JBS lé
27, e’ [1£0+| K | Lr]
Emm= ER(ZR+ZO) a/Ps [1 _ |KI]
27Zp
S Enax _ 1+ K|
E... 1-|K]
g = 1+| K|

1| K|



1+ | K 1
s-1_1-|K| _ _1+IKI-(-1K]D _2IK] _
S+1 1+|K ‘1 1+| K |+(1-| X|) 2
-1 K
P
|KI"S+1
e ————
S—1 |Epu |=| Emin |
|K|= _I max min

S+]—|Emax|+|Emin|

K]



ZR_RO

Case () IfZ,> R, and substituting the value of K = Zp + R,

Case (ii) If Z, <R

S =

l+(ZR RO\
1+|K|__ \Zp+Ro) _2Zp _Zp
I K|_1_(.ZR-- RO\ 2 R, Ro
Zr+ Ry
]_(Z@—Ro\
I-|K|__\Zp+R)_2Ry R
+| K| l+(ZR—Ro 2Zy  Zg
\Zr+ Ry



The Input Impedance of the Dissipation less line

The input impedance of a dissipationless line is given by,

7,= Bs _EpcosBs+ Iz Rosings _ p | Eg+jIgR, tanps '

M) '
I IRcosBs+j%sinBs  frRo+JEgtanps |
" i _
——If-+jR0tanBs
ZS =R" E > Sil‘lce ZR -_--&_
Ro+f78‘taﬂl33 Ip
L R i




Z,=R Zp + J RytanBs
Ry + jZp tan Bs

The input impedance is complex in general and is periodic with variation of Bs, the period
A

being  or s = 3

Another convenient form of input impedance can be obtained as

Ip(Zp+Zy)
7 - LB _ 2
> Iy Ig(Z, +2y)
2Ry

(ej Bs | K e IPs )

( e/Ps _ K o~ /Bs )




_R e/PS 4 K o /Bs
o | gJBs ~ K e /Ps

PléBs+|K| A(b—Bs-
. “L1£Bs—| K| £o-PBs

o

where ¢ is the angle of reflection coefficient K

Dividing both numerator and denominator by 1 / Bs

1+| K| £o-2PBs
2=k, (1—|K| 4¢—2Bs]




(i) The input impedance will be maximum at a distance of,

¢»=2Ps (or) $—-2Bs=0

(or) genefal expression s = 2¢ + nzl

S =

2B

- 1+| K| RS
‘e Smax_RO ]_|K| o

where S represents voltage standing wave ratio




(ii) Input impedance will be minimum if ¢ — 2fs = =, with phasors again coincident

General Expression: s = -;L +(2n - 1)—&
4
2Bs=¢+m

_ R, [1+|K|4¢—(¢+n)]
1-| K| 26— (9+7)

S min

1+ K| Z£-7) |
=R | 1-1K|2-7)_

-] K| | Ry
= Ry |:1+|K|J Zgin = S

where S = standing wave ratio



Input iImpedance of Open and Short Circuited
l_Ines
The input impedance of a dissipationless line is given by,

_— [ZR+jRotan|3s)

s 7o R0+jZRtanBs

(i) Input impedance of a short circuited line:
For a short circuited lines Z, =0

Z,.= R, (JRO tanBS)

R,

Zsc =] R, tan Bs
27
" 21‘:5 B_—. ——
Zo-=j Ry tan BN A




27s
loe=JX=J Ry tan==

Zsc _ X 2 ,
The variation of —= =J tan( M) with a length of line s is plotted as:
RO RO A
R (Inductive)

+ ! | : | l l

I I ! I | I

i I | | | I

X s M4 ) i 3A/4 | I 5A/4 |
Rq : EVI s
I | | I 1 j

I I | i | !

1 | | | i |

— ! i ! i |

|
(Capacitive)

Short Circuited Line



(ii) Input impedance of a open circuited line:
The input impedance of a dissipationless line is given by
Zp+jRyt
Z;= Ry | == JRO ==
Ry + jZp tanBs

For a open circuited line Z, = «

(1+j-2&tanﬁs\
Z;= Ry R, .

—~ + jtanBs
\ ZR )




* 2= Ry ( jtan Bs] tan 3s

2ns
Zo=Z,.==] Ry cotBs=~j R, col o
v o, . Zo(‘ (\’ . ~ g ~ . . . .
Variation of 2Z2€ =2 as a function of length of line s for a open circuited line is plotted as:

> S

- S G N S SNy W Y SN ey N S =

>J
-——;i—;;-———-——

Open Circuited Line



Power and Impedance measurement on Lines

The voltage and current on the dissipationless line is given by,

E = J: (ZR2+Z°) (1+| K | £ - 2PBs)

 IR(Zg+Zg) )
I= T (1-| K | £ -2Bs)

For a voltage maximum, the incident and the reflected waves are in phase. 1 ~ 0°is proportional
to the incident wave voltage and |K] ~ ¢ — 2PBs is proportional to the reflected voltage.

InZr*20) (| 4 o

E__ = Inphase condition =



Similar reasoning shows that at a current maximum the incident and reflected waves must be

in phase, so that

IR‘ZR +Zol (1 +|K|)
2

Diagram illustrating equations



Since a change to the values at voltage and current minima requires only the reverse of

phase of the reflected waves or a minus sign in front of |K], the ratio of E min IS given by,
lmin
Emin _
= RO
| min
IplZg+Z, |
by ™ (1 -|K])

2 R

The resistive impedance seen at a voltage loop (Antinode) is

Emax _ R, [1+|K J SRy =R




Since the voltage and current are again in phase at a current loop,

the resistive impedance
may be identified as R impeaan

Enin ZRO(I_lKl)_Ro _ R

Imax (1+|K|) - S min
o B
R ax
p= Elz:'\in

Rmin

Multiplying the above two equations for power
2 2
> _ Er‘:lax * E i

B Rmzv( ) Rmin




Substituting the values of R_. R,

P = — Et:\ax Ezm E§1ax Er%lin
( Emax ] (@mm] SR, - Ro
[ min ! max 5
pr = E fhax °1E31in
R?
pP= lEmaxHEminl
R,

Similarly] 7 =1 ||| .R, |




Measurement of unknown load impedance

' ission li rmined
The unknown value of a load impedance Z, connected to a transmission line may be dete

by standing wave measurements on the open wire or slotted line. Bridge circuit is used for the

measurement of unknown impedance.

At the point of voltage minimum at a distance s’ from the load it can be shown that

Ry
ZS = Rmm = S

Atany point on the line, the input impedance is given by,

—ZR+jR0tan(2‘n:S'/7\.)— _R
Z,= Ry R0+jZRtan(21tS'/7L)_ S




Solving for Z, gives,

Ry +J Z, tan (2’;“ J=S zR+jR0tan(2’;)

o

=82, +j Z, tan (2:6‘) == Ry +j Ry Stan (2’;5)

—Z, | S- Jta"(z;ts] =—- Ry l-—jStan(—z—n—s-—]
-

b - -



gives the value of connected load impedance



Reflection losses on the Unmatched line

The maximum voltage is attained when incident and reflected waves are in phase
| Vi | = [ Vil £1 Vel

I Ze+Z))|
- 2

The minimum voltage is attained when incident and reflected waves are in out of
phase.
|vrnin| = |V,|-—|V,|

| I (Zp +Z
_ R(R2 O)I(l—IKI)

(1+[K])



_ |Vmax|= 'vl|+|vr|
- |vmm| lvl|—lvr|

. Standing wave ratiois S

\Y Vv
Power delivered to theload P = | ”'“"Z” -!'iﬂ-l-
0

WARNANINAERAD.
ZO
Vil -1V, P
ZO




If P, is the transmitted power in the incident wave and P, is the reflected power in
the reflected wave, power delivered to the load

The ratio of power delivered to the load to the power transmitted by incident wave
is given by
P_P-P_. &
P: Pi Pf
A A
= 1- T

I
]
7~




Measurement of VSWR and Wavelength

VSWR and the magnitude of voltage reflection coefficient are very important
parameters which determine the degree of impedance matching.

VSWR and I' are also used for measurement of load impedance by the
slotted line method.

Tunable probe VSWR
detector B mefter

1

Microwave | T——— Frequency| | Variable o Slotteq line ol 'Unknown |, | Matched
Source meter attenuator section Impedance load
Microwave

power supply




When a load Z, # Z, is connected to the transmission line, the standing
waves are produced.

VSWR can be measured by detecting Vyax and Viin in the VSWR meter
V 1+1

max

V. 1-T

min

Standing wave ratio (S) =

reflected

I’ = Reflection coefficient =
incident

LOW VSWR (S < 20)
HIGH VSWR (S > 20)



Reflection Coefficient:
The ratio of electrical field strength of reflected and incident wave is called

the reflection coefficient.

r- E, Z-Z,
E, Z+Z,
where, Z 1s the impedance at a point,

Z, 1s characteristic impedance

The above equation gives following equation



Twice minimum

Voltage —
=

V,‘=""|Vmin|

| Vmin I

Distance (cms) —»

Double minima method



YSWR denoted by S is,

g = E_ . _ E,| +|E
Emin EI - |E
where, Ei — Incident voltage, and
E: — Reflected voltage.
2
Pmin - Vmin
2P min &< V:?
V2




V' = 2(Vy)

X

vx = \/?Vmin

Guide Wavelength:

By moving the probe between two successive minima, a distance equal to

—23— is found to determine the guide wavelength A -

A, = —

| V"(%‘E‘T




For TE ;o mode,
Cut off wavelength A, = 2a.

C
Free space wavelength A = =
High VSWR:

High VSWR can be calculated using the empirical relation as,

S= My

n(xI_XZ)




Find the reflection coefficient and voltage standing wave ratio of a line having R
100Q) and Z, =100 - j100().

Given: Z, =100 - ;100 Q)
Z,=R =100Q.

Zp-Zo 100~ ;100Q -100
Zr+Zy 100-j100Q2+100

reflection coefficient Kis givenby K =

- j100 1002 -90°

©200- /100 223.61/-26.57°

K=0.4472 , -63.43°

It



The voltage standing wave ratio is given by,

1+ K| 1+0.4472

Q= = =2618
I—| K| 1-0.4472

§=2.618



Determine K of a line for which Z, = 2000, Z, = 692 / —-12° (). [May/June - 2005]
Given: Z, =200 O Z,=692 ,-12°Q

K_zR-zo - 200-6922-12°
Zp+Zy 200+692£-12°

: _
~ 200-(676.80,143.8) _ ~467.84) j143.8
= 200+(676.8— j143.8) 876.8— j143.8

_ 0
K = 489.4/ —162.91 _ 0.554 \ @
NI

888.512-9.31°



——
A S0 () line is terminated in a load. Z, =90 + j60 ohms. Determine the reflection

coefficient. [November/December -2007|

_Zr-2y _(90+60)-50 _ 40+ 60
Zp+Zy  (90+j60)+50 140+ /60

_ 72.111£56.31°
152.3154.,23.2°

~ 0.4734.233.11°

K




A radio frequency line with Z, =70 ohm is terminated by Z, = 115 — j80 ohms at

A =2.5 m. Find the VSWR and the maximum and the minimum line impedances.
[November/December - 2007

Given: Z =70 , Z,=115-j80 O

(i) The reflection coefficient X is given by

o Zr-Zy_(115-j80)-70 _ 45— j80
Zr+Zp (115-j80)+70 185— 80

0
P 91.7877 £ - 60.64 = 0.4553./ —37.26°

201.5564 ./ —23.38°




1+ K| 1+0.4553
1I-|K| 1-0.4553
(iii) Maximum line impedance is given by,

R,..=S5Z,=SR,=(2.6717) (70)= 187.02¢)

(ii) VSWR=S= =2.6717

(iv) Minimum line impedance is given by,

3 il e 0 2620
mn S S 26717



An open wire line counsists of two copper condutors each of radius 2 mm and are
separated by a distance of 250 mm in air. Calculate the following per unit length of
the line, if the frequency of the wave signal is 40 kHz.

(1) Inductance L
(1) Capacitance C
(iii) de resistance R, given that for copper
- iven: g = =" 3
o =57510'/, Given: @a=Imm=2 x 10°m
(Iv) ac resistance R . d=250mm =250 x 10°=0.25m

=40 kHz

oc=575x10"G/m



(i) The inductance L is given by,

L -‘-’9.2]X|0-7 loglog-H/m
a
7 /0.2
=921x10" loglO\OOOOSZ}
L=1931uH/'m
(ii) The capacitance C is given by,
_ '“'07‘3' <1012 F /m

logio —
a



12.07 x1
(0.25 )

°210| 5,002

=5.756 x 1071* F/m

-12
x10 "= F/m [~ &, =1 for air]

(iii) The dc resistance R, each conductor is given by,

/
R; =—
Ta‘o

l
~ 2(0.002)2 x(5.75x107)

~1.385x1073Q/m



(iv) The ratio of ac to dc resistance is given by,

Rae _ 7.530\/7
R;.

¢

R,. =(R 4 )7.53a\f)
_ (1385x1073)(7.53x 2x 1073 x1/40x10°)

R, =4.1716x107Q/m



A coaxial cable is made of copper having conductivity of 5.75 x 107 t5/m. The inner
conductor has a radius of 2mm, the outer conductor has inner radius of 8mm and has

a thickness of 1 mm. The space between conductors is filled with i wicsectric material
of relative permittivity of 4.

Calculate per km the following:

(i) inductance L

(ii) capacitance C

(iii) dc resistance R,

(iv) ac resistance R__ at frequency of 150 kHz.



Given: 45 -575x 1070/ m
a=2mm = 0.002m
b =8mm = 0.008m
¢ =9mm = 0.009m
g =4
f=150 x 10° Hz.
(i) The inductance L is given by,

b

L= 4.61x |0—7 |0g|0(—)H/m
da



= 4.6l xl0_7 |Og|0[0 008]

0.002

L=278x10""H/Im
L=0.278 mH/km.

(ii)) The capacitance C is given by,

I 24.13x1071%(4)
C= =% SrFim = (0 008)
log

b
logq -
d

0.002

=1.603x1071"YF/m
C=0.1603 #F/m



(iii) The dc resistance of coaxial cable is given by,

P

1

—

] Q/m

l
Rd( = no

2

(4]

1

-

cz—bz_

I 1

= +
7(5.75x107)| 2x107)2  9x1073)2 - (8x107%)?

R, =1.71x107°Q/m

R, =1.7] Q /km.



(iv) The ac resistance of coaxial cable is given by,

R —4l6x10_8\/—[ ]Q/m

=4.16x10‘8\ﬁ50x103[ : S+ ] ]Q/m
2x10 8)(]0_3

=0.01 Q/m
R =10 Q/km.



A lossless line has a standing wave ratio of 4. The R is 150 ohm and the maximum
voltage measured on the line is 135 V. Find the power being delivered to the load.
[May/June - 2006]

Given: §=4, R =150 ohms, B =130V,
At voltage maxima the impedance is given by,

R =SR =4(150)= 6000
The power delivered to the load is given by,

p) 2
pEma _(35)° 50300
600

Rmax




A line having a characteristic impedance of 50 Q is terminated in load impedance
(75 + j75)Q2. Determine the reflection coefficient and voltage standing wave ratio.

Given: Zp =(75+ j75)Q Z; =50Q

Zr—Zy _(75+j75)-50 _ 25+ j75
Zp+2Zy (75+75)+50 125+ 75
79.056 £71.56

" 145.7738 230.96'
K=0.5423 /40.6°

Reflection coefficient is given by, K =

The VSWR ratio is given by,

l+|K|=l+O.5432

= 3.369
=1 K| 1-0.5423

VSWR =S =




UNIT 11
IMPEDANCE MATCHING IN HIGH FREQUENCY
LINES
Impedance matching: Quarter wave transformer -
Impedance matching by stubs - Single stub and
double stub matching - Smith chart - Solutions of
problems using Smith chart - Single and double

stub matching using Smith chart



Impedance matching

It is important to transfer radio frequency signal from the source to the
load through transmission lines without power loss.

To achieve this the source impedance and load impedance have to be
matched

For maximum power transfer the load impedance must be complex
conjugate of source impedance

Ry +jX, = Rs — JXs
A network which is used to match the load impedance with source
impedance is called matching network

One eighth wave line, quarter wave line and half wave line are used as
matching networks



One eighth Wave line

For the transmission line the voltage and current at any point distant x from the
receiving end of the transmission line is

Vo(Zo+Z))
YV .-...R2RZR 0 (e'!x +Ke-’{x)
Ig(Zg+Zy) . .
[ = ‘220 (e"*-Ke™ %)

For the line of zero dissipation, the attenuation constant a is zero. i.e., y = jp and

Zo’ R‘r
Vo (Z, +Ry)

2Z,

V = (elﬂx +Ke-la‘)



VR ,
= ——2ZR[ZR(eJB" +Ke'}&)+Ro(e1ﬂ-‘ +Ke-jﬂ.l‘)]

For standing wave | K| =1,

_ Lelﬁ‘ +e'IB‘2 VR RO ielax_e'jﬁ!l
Bt V, = 1,Z,
(/™ + ¢ /™ , e/P ¢/
V=V™7 )’ijgRoL 2; -

= VyocosPx+jIgRysinPx



Similarly, for the current on the transmission line
. VR .
[ = IpcosBx+j R—Rsm,Bx
)

The input impedance of a dissipation line is

V

Ly = 7

Vecos Bx +j Ix RysinPx

VRr .
[gcosPx +) E;sm Bx

Ig Zgcos Bx +j Ig Rysin Bx

- = IR Zg |
[RcosPx+j R, sin B x




Ls

ZgcosBx +j Rysinfx

Ly .
cos B x +J g sin Bx
0

ZpcosPx+jRysinPBx |
Ol RocosPx+jZgsinPx

Zpt+jRytanPx |
| Ry+jZptanPx |

R

For an eighth wave line x = A/8,



' Zg +J Ry tan (n/4)

Zs = Ro| Ry+j Zg tan (n/d)_
Zg+Jj Ry
£s = RO_RO*'J' ZR]
If such a line is terminated with pure resistance Ry ie, Zz =Ry
- Rp +j Ry |
s = R Rt/ Ry

Since, both the numerator and denominator have identical magnitudes, then
|Zs| = Ry



Quarter wave line (Quarter Wave Transformer)

The input impedance of a dissipationless transmission line is

Zgpt+jRytanBx

Zs = Ro| Ry+j Zgtanpx _
[ ZR .
taan+.,R0
_tanﬁx+jZR




For a quarter wave line x = A/4,

2t A m
Px =574 =3
- _Zg .
tan1t/2+1RO
Zs = Ry R,
__tan1t/2+1ZR
R2
zs—-z—:

c?a'-
Il

5
N

z




——

i

Quarter wave transformer




Half-Wave Line

The input impedance of a dissipationless transmission line is

Zg+j Rytan B
_Ro"‘jZRta_an_

For a half-wave line x = A./2

_2n A
Bx_k'z"n

" Zp+jRytanm
 Rot+jZptanm




A half wavelength of line may then be considered as one to one transformer. It has
application in connecting a load to a source in cases when the load and source cannot
be made adjacent.



Stub Matching

accomplishing impedance matching is the use of an open or short circuited line of
suitable length, called stub at a designated distance from the load. This is called stub

matching. There are two types of stub matching. They are:
(/) Single stub matching

(i) Double stub matching
Single Stub Matching

A transmission line having a characteristic admittance Y, terminated with load
conductance Yy (load resistance Zg) is shown in Fig.3.7. Since Yy, is different from
Y,, standing waves are set up in between source and load.



Single stub matching

4——-—-—18-———-—>



The input impedance at any point of a transmission line is given by

7 Zp +Z,tanhy!
0Z,+Z; tanhy!
Yr + Y, tanh y !
9Y,+ Yy tanhy!

Ly =

The input admittanceis Yq = Y
For propagation y=jB (a0 =0)

Y+ jY,tan B/
s = Y, ,
Yo+ jYgr tan B/

Y



dl
4 'S

n

h\Al(

a

.

l

m

n

F

B/
an

+ Y, t

Yr +.

Y

B/
an

+ JYg
Yot

Yo

B/
IR +/ tan ]
5 Tk tan B /
Yﬂ!: l+j-?_.;

— ce
ittan
dmi
a
Y 1zed input
aliz
norm
S - — o
Y,
‘here
W



< = Y, normalized load admittance
Y, +jtan B/
m 1+ Y tanB/

Y,+jtanfBl/ (1-5Y,tanP/)
1+jY,tanBl/ (1-5Y,tanBl)

o
l

Y —jYtanp/+jtanp/+Y, tan? B/
1 +Y? tan2 B/
Y(l+tan2l31)+1(1— ,)tanBl
1 +Y? tan2 B/




For perfect matching Ys = Y,

YS
7, = !
SY, = 1

n
The stub has to be located at a point where the real part of Y, is equal to unity
Y (1+tan2B /)

1 +Y? tan2 B/,
Y +Y, tan2Bl, = 1+Y? tan2 B/,
Y, tan2 B/, - Y tan2B/, = 1-Y,

tan2 B/, (Y,-Y?) = 1-Y,

= ]






—
21|:I tan-1 Yy
A tan\/ Yr

The location of the stub /, is given by

/ 1
l, ——tan-—l [ zR—— Zo=y,

The susceptance at the location of the stub is

S, (-Y])tanBl
Yo 1+Y?tan?2B,
.
YO
1-Y)\ [ ¥
=( A\ Y,
Y0






The susceptance of the stub is
Yo
S.r = (YO - YR) -f;

This can be obtained either by an open circuited or short circuited stub. But
normally short circuited stub is preferred because of the following advantages.

(?) it radiates less power.
(i) its effective length may be varied by means of a shorting bar.



The susceptance of a short circuited stub is equated to Y, cot B /,

Y,
(Yo - Yg) Y, Yocot B/,

Yo-Yg /Yo
Y, Y, = cotfP/,

cotf/,

1
TP,

(Yo

_ -2,

_ =%,
Iy Z, '\jZoZR ‘\jZRZo



Lo 2y
tanBI,=h—°-

ZR-ZO

e e EE

Ze - Z,
The length of the stub is given by 1
B S V7Y 2
W= o | 27,




Location and length of the Stub using Reflection Coefficient

The input impedance of the line is given by
1+Ke 27/
1-Ke™ 27/

For lossless line . =0, y=j Band K=|K | e/¢

Z; = Z,

where ¢ is the angle of reflection coefficient.

1+|K|e/te’ P!
Z; = Z 1— Klej(tf’—zl”)

= LT 1K | et e 2P




The input admittance is given by

|K|e1(¢ 28D
Y, = Gol+|K| T @-28D

where the characteristic conductance is
1 1
Zo
|K| [cos (p— 2B 1) +j sin(d— 2B D]
1"‘IKI [cos (¢— 2B ) +jsin(9p— 2P )]

_ o LolKlfcos (9= 2BD-j|Klsin(¢— 2P1
°1+XK|y[cos(¢ 2B +j | K|sin(¢— 2B D)

[~ Z, is resistive]

<
|




Multiplying the numerator and denominator by
1+|K|[cos(¢-2B1)—j|K|sin(¢—-2B /)

V. = G 1-1K[2-2j|K|sin(¢-2B1)
' 01+|K+2|K]|cos($-2B1)

Since Y; = G;+j S,, then
Y, _ G JSi_1-]KP-2j|K|sin(¢-28))
G, G, G, 1+|Kp
0 0 0 | K[ +2|K|cos(¢—2B1)
Equating the real parts
G, 1-|K ]

Gy 1+|KR+2|K|cos($-2p1)




Equating the imaginary parts
Si _ __ -2|K]|sin($-2B1)

Go ~ 1+|KP+2|K|cos(¢~2B1)
At the location of stub Z; = Z,, for matching,

Since there is no reflection, / =/,

~ G, = G,
G _
G, 1
_ 2
1- K| 1

1+|KR+2|K|cos(9-2B1,)
1-|K[P = 1+|KR+2|K]|cos(¢-2B1,)



2|K|cos(¢-2B1,) = -2|KP
cos (p-2B1,) = —|K|
0-2B1, = cos (-|K|)
But cos!(—|K|) = —n+cos!|K|
6-2Bl, = —mn+cos!|K|
2B, = ¢+m—cos!|K|
;= ¢+mn—cos!|K]|

s ZB
I, = 35 [b+n-cost [K
or s = an [¢ + 7t —cos

¢ B



The normalized susceptance (imaginary part) equation is
§_¢_ _ -2|K|sin(¢-2B1)
Gy, 1+|KPP+2|K|cos(¢-2B1)
But (¢—-2p!,) = —m+cos!|K| and

cos(¢—-2p /) = —-|K]|
S, -2|K]|sin(=n+cos!|K]|)
G, ~ 1+|KP+2|K[(-IK]
~ 2|K]|sin(cos!|K])
- 1+|K}-2|K}
Letcos!'|K|=0,then| K|=cos9

sin (cos™! |K|) = sin@= 4/ 1 —cos?0 =\fl—|l(|2



S, 2]K[y1-]K[]?

© G, 1 -|K?

B 2| K|
= % JT-TKE
The susceptance of the stub is G, cot 8 /,
2|K

GycotpBl, = G, T _|KP

1 _ __2[|K]

tanBl, A[1-|KP
1-|K[?

_N
anBl, = 5y



_ o NI-|KP?
Ple = @731k
] =-1'tan-'M'2—
‘B 2|K|
‘T 2m 2| K|

The location of the stub ‘/;’ and length of the stub ‘/, can be determined, if the
reflection coefficient and frequency are known.



A short circuited stub is normally preferred to an open circuited stub

However the single stub matching has the following drawbacks.

(/) Single stub matching is applicable for single frequency. For variable
frequency the location of the stub is not fixed (i.e., changing).

(i) For final adjustment the stub has to be moved along the line slightly. So,
it is possible only in open wire lines.' - )

To avoid the disadvantages of single matching, double stub matching is
introduced. Double stub matching is one in which two short circuited stubs spacing
A/4, whose lengths are adjustable independently are fixed as shown in Fig.3.8.



rl4

Double stub matching




Circle Diagram
The input impedance for the transmission line is given by

Vr(Zg +Zy)
v, &
I Ix(Zg +Z)
27,
Ve Zy[e"*+Ke 7" ]
T I Zg[e"F- Ke'*]

[e"* +Ke 77
Zg =

[e"*-Ke 7" ]




~ VeZye [1+Ke?""]
Ve e’ *[1-Ke ?7*]

_ g [LtKe"]
fo-Ke )
The input impedance of the transmission line is given by
1+Ke 27"
Zs = Z 1 —Ke 2"

For alossless line y=j B (.. a=0)

The normalised input impedance is obtained by dividing Zg
impedance Z,,.

by its characteristic



Lg 1+Ke-j23x

Zin - ZO - l_Ke—jZﬁx

Z, (1-Ke/?P*) =1 +K e /2>

Z,- Zn,KeJ2Bx = 1+Ke /P
Ke /2B 1+Z,,)

Z, —1
K e_jsz — e
erl +1

Z., —1

in

But Z,, is a complex quantity. It can be represented by

Z, = R+jX
where R is the resistance, X is the reactance



K o-/2Bx = R+jX-1 (R-1 +;X
R+jX+1 R+1)+;X

The above equation leads to two sets of circles. They are S circles and B x circle. S
circles can be obtained by equating the magnitude and B x circles by equating the
tangents of the angles.

oo - (G%) (B0

R2-1+jX (R +D-jXR-1)+X2
R+ 12+ X2
_R-1+X2 02X
R+12+X2 TR+ 12+




By converting rectangular co-ordinates in to polar co-ordinates

i 2X
p!
~j2Bx — _LR—I)_’(‘I'XZ _ (R+])2+X2
Ke” R+1)P+xz tan R2-1+X2
L (R+1)2+X2
Constant S circles are obtained by equating the magnitude
~ (R-1)2+X?

K2 = R+12+ X2
K2(R+12+K2X2 = (R-1)2+X?
K2(R2+2R+1)+K2X2 = R2+1-2R+ X2
K2(R2+X2+2R+1) = R2+X2-2R+1
K2R2 + K2X2 + 2K?2R + K2- R2- X2+ 2R -1 =0



RZ(K2-1)+X2(K2-1)+2R(K?2+1)+K?-1=0
Divide by K2 -1,

2 +
R2+X2+2R(K 1)'+1 = 0

K2 -1
The reflection coefficient can be written in terms of the standing wave ratio.
S—1
Kl =871
(———_l )+
K2+1 \S+1 ) ‘=£S—1)3+(S+1£
Ki-1- (S—l \2 (S—1R—(S+1)
+1 ~1




Q2_2S+1+S2+2S+1
S2-28S+1-S2-2S-1

C2(S2+1)
= T 248

K2+1  (S2+1)

K2-1 — 2S

Substituting this value in the main equation
2 +
R2+X2-2R LS—2§'D' +1 =0

2 4 2
Adding (‘(S 7S ) ) on both sides




2 2 241 2
Rz__zRLSHl) +(M) 32 = _H(L_S__))

28 28 25
M]’  —4852+84+282+1
[R_ 2S X = 4 S?
~ S4-282+1
=T 49

52-1)2

(=
S0 (821

[R" 28 X2 =738




his is the equation of the S circles whose radius is

1

-1 578
28 2
S+"1'

S2+1 S

centre 1S 23 = 9



15 5
4
25
1.0
2
0.5
ra
Xq O O
U 3
-05
-1.0
-15 L

A family of constant — S circles



The constant B x circles are obtained by equating it to the tangent of angle

_ 5 X -
| &
2Px =@l TR e xe

L R

Taking tangent on both sides

2 X
tan("2ﬂx)=|:R2_1+x2:|

2 X
~an(@Px) = jyexe

2X
R2+X2-1 =

"~ tan2Px



2 X
2 _ precme
R2+ X2 1+m2Bx 0

. 1 :
Adding an?2 B x on both sides

1 2 X !
2 +
R+ X 2Bx " wn2px | tan?2Bx

1 2 !
2
R+(X+tan2[3x) l+tan22[3x
But 1+ 1 1
tan22Bfx  sin2Px




1 \2 I
ooy
Xt an2pBx S22 Bx

This is the equation of P x circle whose radius is sin}’l Bx and the centre is

1
tan2PBx’

Though the circle diagram is very useful in calculating the line impedance and
admittance it has the following drawbacks.

& S and B x are not concentric, making interpolation difficult.

¢ Only a limited range of impedance values can be accommodated in a chart

of reasonable size.
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A family of constant B x circles
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The transition - line circle diagram



SMITH CHART

“Smith Chart is a special polar diagram containing constant resistance circles,
constant reactance circles, circles of constant standing wave ratio and radius lines
representing line-angle loci; used in solving transmission line and waveguide
problems”.

The basic difference between circle diagram and Smith Chart is that in the circle
diagram the impedance is represented in a rectangular form while in the Smith Chart
the impedance is represented in a circular form.

The Smith Chart is obtained as follows.

To display the impedance of all possible passive networks the graph must extend
in all three possible directions (R, + jX, —jX). The Smith Chart is committed to a
bilinear transformation by plotting the complex reflection coefficient.
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1+K = z(1-K)
_1+K
7 1-K
Since the complex quantity z =R +jX and the complex quantity K =Kg +jKy
I +Kg +/Ky
1 - Kg —jKy
(1 +Kg) +jKx
(1-Kg)-JjKy
[(1 +Kg) +/Ky] [(1 = Kg) +/Ki]
[(1-Kg)—jKy] [(1 - Kg) +/K«]
1 "‘¢ 7Ky - Ki - K2 —j Ky Kx +jKy +j Kg Ky —K%
(1-KpP?+K5

R+jX =




1 -K2-K2 +2/Ky
(1-KpP +K5

R+jX =
Equating the real parts on both sides
2
1-Kg-K5
(1-Kg)? +K2

R =

Equating the imaginary parts on both sides
2 Ky

X =

-K} -K?

The real parts R =
P (I—KRP+K§



R(1-Kg?+RK% = 1-KX-K§
R(1-2Kz+K¥)+RK2 = 1-K; -K§

- 2 2
R-2RKy+RKE+RKj = 1-K;-Kj

(or) R 2 2 K2 2 _
Ki+RK2+K:2+RK:2-2RKy = 1-R
K2(1+R)+K:2(1+R)-2RKy = 1-R

2RKg 1-R
1+R  1+R

|

2 2
K2 +K2 -



(KR" ) “a+RE TR T THR

R ¥ ., I1-R R2
(KR" ) *Ky = T+ R Y T +RR

_ (1-R)(1+R)+R?
- (1 +R)2

_ 1»/R5+3/

(1 +R)?
R ¥ _, 1
(KR“ 1+R) tRx = T+Rrp

This equation represents a family of constant R circles having centres on the R

; 1 i 3 -
.axis at,[RE T O]and radius of R+1 This is shown in Fig.3.12.




Circles of Constant - R
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* »
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2Ky
(1-Kg)2 +K?

X[1+Kg-2Kg+K3] = 2K,

The imaginary parts X

Dividing by X
2K
1+K;-2Kg +K3 -2 = 0
. 2Ky
(KR—1)2+K;'(—_"X = (
.1 2K
: x | ]
Addmg X2 on both 31dcs, (KR— 1)2+K§(— X +X2 - ')Tf

1 ]2 1
Ke-1024| Ke-x | = 38
This equation represents a family of constant X circles having centres at (1, 1/X)

and radii of % This is shown in Fig.3.13.



e K - plane plot

Family of constant X circles
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. Design a quarter wave transformer to match a load of 200 Q to a source resistance

of 500 Q, operating at a frequency of 200 MHz. [Nov/Dec 2006]
Solution: Given Zp =200Q, Zg = 5000, f = 200MHz
2
R VBT
= ,/(500)(200)
=316.22Q

; A
Input impedance of z transformer = R = 316.22 Q.



The frequency of operation is f=200 MHz.

Wavel C _ 3x10° ]
avelength A = 7 200x10° - S m.
, A
The length of the quarter wave line s = 2
I 0.375
$=3 =73 =0375m
5°°|__‘l. Z, iR,- 313.22n§ Z,=2000Q




Determine the length and impedance of a quarter wave transformer that will match a
15012 load to a 75Q2 line at a frequency of 12 GHz.

Solution: Given Z,= 150Q Z,=75Q S =12GHz

R =\Zs Zp =75x150 =4/11250 2 =106.0660 ()
Frequency = 12 GHz

C=7
£ 3x10 =025 25
A= f 2xl® m=25 cm.

A
The length of the quarter wave transformer = S = 2° 6.25 cm



Stub Matching

accomplishing impedance matching is the use of an open or short circuited line of
suitable length, called stub at a designated distance from the load. This is called stub

matching. There are two types of stub matching. They are:
(/) Single stub matching

(i) Double stub matching

* Single Stub Matching:

For greatest efficiency and delivered power, a high frequency transmission line should b Ope

. . . L
as a smooth line (or) with an R, termination. \



The quarter wave line or transformer is used as impedance matching devices.

Another means of achieving this is the use of an open or closed stub line of suitable ]ength

reactance shunted across the transmission line at a desngnated dlstance from the loag.

The input impedance of the line is 1 / SRO at a voltage maximum
S / RO at voltage minimum.

At intermediate point A the real part of the input impedanceis 1 /RO
or the input admittance at A is

Y= 1, jB.
Ry

The susceptance B is the shunt value at that point.



Voltage minimum
before insertion

of stub \*r |«52 :I

A
o
v
>

!

-<<
w
&<

Location of Single Stub for Impedance Matching



- After the point having conductance equal  The input admittance at this point is given by,

to 1/ R, is located, a short stub line having

. | ; |
input  susceptance of FB may be Ys = —+jBF jB=—
connected across the transmission line. RO Ry
The input impedance of the transmission _
Zs= Ry

line at point A looking towards the load is:

The input admittance ¥, looking towards the load from any point on the line, may be
written as:

_ 1 (1—|K14¢-2BSJ
2 ZS RO l+|K|£¢—2BS



and changing to rectangular coordinates,

[ 1-| K | cos(¢p—2PBs)— j| K |sin (d—2Bs)
° L1+ K| cos(¢—2Bs)+ j| K [sin ($—2Ps)

multiplying the numerator and denominator by

1+ | K |cos (¢ — 2Bs)— j| K |sin (¢ — 2Bs)

o 1-| K P=2| K [sin (¢— 2Bs)
¥ ™o i 1+|K|2+2|K|COS(¢—ZBS) i

= G + jB,.

Expressing the shunt conductance as a dimensionless ratio G5 orona per unit basis,
e



Equating the real parts

95__[ KR -
Go |1+ K["+2|K [cos($—2Bs)

L

the shunt susceptance on a per unit basis is.
Equating the imaginary parts

Bs _ 2| K |sin(0-2Bs)
Gy |1+ K [*+2|K[cos(p—2Bs)




Admittance conditions on a line indicating proper location of the stub for |K] = 0.5



The value of ZS. has a maximum and this maximum occurs for the value s, at which the

Gy
cosine term is —1 (or) ¢ — 2PBs, =—m,
¢—-2Bs,=—m
d+T
S2 = ZB

At a distance s, from the load,

6, _ 1-IKI> _(a+KDA-|K])

Gy, 1+|KP-2|K|  (-|K))?

Gy 1+ K]

G, 1-1K|~=%




Gg

Since this equation states that R, = % , the point of maximum G is recognized as a p0
0

minimum voltage, at a distance s, from the load.

int of

Ata distance s, from the load it can be seen that G, =G,. This is the point at which the stub
is to be connected and the value of G /G, is unity at that point.

L - K[
1+ K |* +2| K |cos(¢p—2Ps,)

1 + |KF + 2|K] cos(d — ZBSl),= 1 - |K}?
cos(¢ — 2Bs,) = — |K]
cos™ (— |KI) = ¢ — 2Ps,




Since  cos™ (-K).= -7 + cos™ |K]

¢ — 2Bs, =— m + cos™! [K]

_ d+m—cos™ | K| 2T

S, 2B , where B=T

sl=% [¢+n—cos'l|K I]

Hence the distance d from the voltage minimum to the point of stub connection is:

dzsz—s,



-

‘¢+n | p+n—cos! | K]

9="2p 2B
] cos™ e cos™! (-S—'—_—l- o
d_cos | K| S+1) _ S+1)4
23 2.@. 0
A

The input susceptance of the line at the stub location nearest to the load can be obtained from
equation

Bs | -2|K|sin($-2ps)
Gy |1+ K[*+2|K|cos(p—2Ps) |

¢ — 2Bs, =— m + cos™ |K]



. 2| K |sin(—1r+cos'l | K |) |

° L1+1K P +2| K |cos(~n+cos™| K)_

cos (-—n tcos™'| K I) = - |K]

Letcos!|K|=0,then|K|=cos0

sin (cos ! |K|) = sinB = \/T-cosze = \fl—lKlz

sin (-n tcos™ | K |)=i 1-K?

\
[ k=R
B.= Gy

¢ \1+|1<|2-2|1<|’-j




\
. (2|1<|,/1-k2

= G
\
The susceptance of the short circuited stub is
-G,
B,.=- G, cot BL =
X 0 ot tan BL

where L is the length of the short circuited stub.
If the stub and the line have equal G, then

Bgc=-Bg

/



Gy . (2|K|\/1—7J
tanBL 0\ 1-|KJ?
Gy - ( 2| K|

G,
\\/l-lKlzy
! 2|K |

tan(%JL \/1 -|K|?

_ 2
L= =—2L—tan—]\/1 lKl
om 2| K|

This is the length of short circuited stub to be placed d meters towards the load



Double Stub Matching

Limitations of "ingle Stub Matching

i) The stub has to be located at a definite point on the line. Single stub is adequate for a openwire
line. For coaxial lines, placement of stub at exact point is difficult.

ii) Two adjustments were required in single stub, these being the location and length of the stub.

iii) .This technique is suitable for fixed frequency only. If frequency changes, the location of the
stub has to be changed.

To overcome this difficulty, double stub impedance matching is used. In this system, two
different short circuited stubs are used for impedance matching, location of the stubs is arbitrary

and the spacing between the two stubs is made R



Yr

Let the first stub whose length is /, be located at the point ||’ at a distance d, from the load
end.



The input impedance at any point on the line is given by:

2,02,

1

2,=—, 72 =—and Z, =—
Y

\.’

2 +J2Z, tanB']

Z +JZ anfs

l 1

\’

Substituting all these expressions into the expression for Z,

=
Y, Y,

=3

\7

|
v J——tan Ps
1\ B

[\

I
Y

O

——t J -\-}——- tan Bs

R

R

-




by multiplying and dividing by Yy

;o

l+j-¥;5-tan[3s

O

\’

Q

ke

L

Ao

-\Y—’B- + jtanBs

o

¢ 7 lan s

I+ \.“ tan |1s
\

Wehave —% = v = nommalized input admittance

<7 Ve = normahized load admittance

-

—



Ve +1tanPy

"y =
[+ 7y, tans

N = (O +/anPs) (1= jv, tanPs)
I+ v tanPBs) (1= v, tan Bs)

Vp = jvg tanBs+ jtan Bs+ ), tan® Bs
I+ ys tan® Bs

y, =

= 3

DV (1+tan’ f3s) " J(1=y)tanfBs
14y tan®Bs 1+ tan’ Bs



At point | |’, we have s = d,. Substituting we get

. (I+tan’ Bd) ’ (1-ys )man _

. + /b
l+\R an’ Bd l+; tan” Bd “& TS5

When a stub-1 having a susceptance of + jb  is added at this point, the new admittance
value will be

' « J.!
"1 =gl +j bl
where & '= b 4+ b and g, remains unchanged.

Now the input admittance of'the line looking toward the load at 22’ location should be:

Y, =G



Case (i): Quarter-Wavelength spacing between two stubs (d, = ),/4)

1l

SMITH CHART
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Case (ii) : Three-eighth’s wavelength spacing between two stubs (d, = 3)./8)

d, = 38

fe—= ~fe—0d,

. 4 SMITH CHART
o
2 ] i
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R [g = 1 Circle)
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UNIT IV

WAVE GUIDES
General Wave behavior along uniform guiding
structures — Transverse Electromagnetic \Waves,

Transverse Magnetic Waves, Transverse Electric Waves
— TM and TE Waves between parallel plates. Field
Equations in rectangular waveguides, TM and TE
waves In rectangular waveguides, Bessel Functions, TM
and TE waves In Circular waveguides



Electromagnetic Waves between parallel Plates

» The electromagnetic waves that are guided along g#over conducting
or dielectric surfaces are called guided waves
Consider an electromagnetic wave propagating between a pair of parallel perfectly

conducting planes of infinite extent in the y and z directions as shown in Fig.4.1.
X

Parallel conducting guides



Maxwell’s equations will be solved to determine the electromagnetic field
configurations in the rectangular region.
Maxwell’s equations for a non-conducting rectangular region are given as
VxH = joeE
VxE = —-jopH

Ex E) 5-’
8 8 @
VxH = 0x Oy Oz
H, H, H,
0H. ¢6H.) _ (c¢H, JH,
(e )5 (M 5T
*\ 0y Oz Y\ 0z cx ox cy

joe [aE+aE + aE..]




Equating x, y and z components on both sides,

oH, oH,

oy ~ oz = joek,

OH, OH, .

3 " o - ]ngy > ... (4.1)
oH, OJH,

73}1 3y joek,

/

VxE=|2 92 2O
4




_(0E, @E,) _ (@E
- 33 -'5"}*‘“( )T -5
i g < Y\ 0z ox *\ Ox oy

- Jon [ExHI ¥ ZyHy M 5: H,]

Equating x, y and z components on both sides,

OE, OE _ 3
ay "_a—zx = "J(D“Hx
0E, OE, | >
Py __-5;- = __jo)“Hy (42)
0E, OE
- - = = ‘“].O)I-le

ox Oy y



The wave equation is given by

V2E = y’E
V2H = y’H
where v2 = (c+jwe) (jop)

For a non-conducting medium, it becomes
V2E = - 0’ueE
V:H = - o’ueH
’E  O’E | &°E

ok ot ¢o- _ _ 2 A
o2 T o T o7 T ok
oM PH _ oo
o2 "o a2 T TR

... (4.3)



It is assumed that the propagation is in the z direction and the variation of field
components in this z direction may be expressed in the form e™**,

where y is propagation constant
y = o+jp
If o =0, wave propagates without attenuation

If o isreal ie., P =0, there is no wave motion but only an exponential decrease
in amplitude.

— 0 -
Let Hy-—Hye"’
oH _
% - TYH, €= -y H,
oH

Similarly, il H



Let = EY ¢ 72

y y
OE
—L = _
0z Y E,
e » aEx
Similarly oz Y E.

There is no variation in the y direction i.e., derivative of y is zero. Substituting the
values of z derivatives and y derivatives in the equations (4.1), (4.2)and (4.3).

YH, = joeE, )
OH,
_YHx...."-a"—x—' =j(08Ey > ...(4.4)
oH
Ex = JoeE, |




\

YEy = "J(D“Hx
O,
- yE, - P = —jo)l_lHy S ... (4.5)
OE
sz = "‘j(‘)sz J
’E 5 ]
E] + YE = - o°ucE
0°H "
rj +YH = —o’peH ... (4.6)
E _ , o’H
where azz--yEand “a'?'=2H

Solving the equations (4.4) and (4.5), the fields H » H, E and E, can be found out.



To solve H,,

OH,
“YHy - 5 = JotE
YE, = -jopH
From the above equations, E
H = v
o jopu
E, = _1_[ .+
Substituting the value of E, in the above equation,
- 1
H, = —L[
jop L joe



X W°UE * Ox
y? y
Hx[l+m2 ]‘ 3 [_a_ag{_,_]
ME o‘pe L Ox
OH,
H, [o’pe +y’] = -y 5
~y OH,
Hx = 0)2 2 v
ne +y° Ox |
_ =y %
o h* 0x
where h% = 12+m2 HE



To solve Hy,
OE,

YE, + "5;“ = jopH, [From eqn. (4.5)]
YH, = joeE, [From eqn. (4.4)]
From the above equations,
_ [o
HJ’ - Y Ex
e o L[ 91*3_]
x Y LJ(’)“I'l;y“ Ox

Substituting the value of E, in the above equation,

jog 1 OE,
B, =y 7[’ Wy = ]



OE

y Y 72 ox
" (1 +c_ofu_§.) - _lee ."’_'.5_
y ,Yz y o0x
oE,
H, (7 + o pe) - jOE o
H = —jO)S aEz
Y (y*+ o’ug) Ox
W = vy’ + o’ue
_ _-_-_j(DS aEz

Y h* Ox




Tosolve E_,

OE,
YE, + F jopH, [From eqn. (4.5)]
WE
H, = - E, [From eqn. (4.4)]

Substituting the value of H , In the above equation,

OE '
: _ . jOE
el
_ -0 ue .

Y X



2

X

" [Y+nge]
* Y

E [y’ +o’pe] =

Tosolve E,, *
OH,
YH, + -5-; = "‘j(DBEy
H, = 1

[From eqn. (4.4)]

[From eqn. (4.5)]



Substituting the value of H, in the above equation,

2
-v“E OH
I e e S
o + O —JOEE,
2
—y* _ OH,
Low + 00| - -5
5 OH,
E,[y"+ope] = jop ox
E, h: 0
X

where h* = y*+o°pe



Transverse Electric Waves

Transverse electric (TE) waves are waves in which the electric field strength E is
entirely transverse. It has a magnetic field strength H, in the direction of propagation
and no component of electric field E, in the same direction. (E. = 0).

Substituting the value of E, = 0 in the following equations.
y 9E,

By = - h* Ox

Then E, = 0and H,=0

The wave equation for the component E,

62E 2 2
6x2 +y°E, = —0" peE,

_ —jos OE,
h? ox

andH



-5;21 = —o’ueE,-y’E,
= - (mzpe + 72) Ey

But W=yl +o’ue
0’E
— +h*E, = 0
ox’ ’

This is a differential equation of simple harmonic motion. The solution of this
equation is given by

E, = C,sinhx + C,cos hx

where C, and C, are arbitrary constants.



IfE  is expressed in time and direction E, = Eg e '*), then the solution becomes,

E, = (C,sinhx +C,cos hx) e™"*
The arbitrary constants C, and C, are determined from the boundary conditions.

The tangential component of E is zero at the surface of conductors for all values
of z.

E,=0atx=0
E,=0atx=a
Applying the first boundary condition (x = 0)
0 = 0+C,
C, =0

Then E, = C;sinhx e *



Applying the second boundary condition (x = a)

sinha = 0
where m=1,2,3,.........
E, = C, sm(mx
JE,  mm

From eqn. (4.5),

Q
=
I
!
.
e
=
=



-1E,

From the first equation, H, = =
JOH

Substituting the value of E " in the above equation
H, = —L C, sin (%Ex) ¢ ¥

JOu
From the second equation, H, = -7 L %,
jou Ox

Substituting the value o@in the above equation

_ —mn mmn
: = Tona C, cos —x) e” v’

a
_ Jmm mm
H, = , Cicos(~~x e 1




The field strengths for TE waves between parallel planes are

5
E, = C sin(m—c:t‘x)e‘"
==L, in(Ex)er P @D
— mn mu ) _..
H, = Joma C, cos(";‘x)e =)

Each value of m specifies a particular field of configuration or mode and the wave
associated with integer m is designated as TE,, wave or TE, , mode. The second
subscript refers to another integer which varies with y.



If m = 0, then all the fields become zero E, =0, H, = 0, H, = 0. Therefore, the
lowest value of m = 1. The lowest order mode is TE,,. This is called the dominant
mode in TE waves.

The propagation constant y = a. + jp. If the wave propagates without attenuatior
a = 0. only phase shift exists.

Yy =JB
Then the field strengths for TE waves are
\
Ey = Cl Sil‘l(","'s't‘x)e"mz
=B o~ (MR )
H, —@Cﬂl-l Cisin{ —~x |e/P > .. (4.8)

H, = LT C,cos(mx)e"-m”)

: wuna a



The field distributions for TE,, mode between parallel planes are shown in Fig,
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Transverse Magnetic Waves

Transverse magnetic (TM) waves are waves in which the magnetic field strength
H is entirely transverse. It has an electric field strength E. in the direction of
propagation and no component of magnetic field H. in the same direction (H.=0).

Substituting the value of H, = 0 in the following equations,

¥ h? ox Y T W2 By
Then H, =0 and E =0 ~ [+ H,=0]
The wave equation for the component H,
8*H,

ox? Y



o2 = ~@ps+y)H,
But h* = y*+o’us
OH,
—5;—" + h? n, = q

This is a differential equation of simple harmonic motion. The solution of this
equation is given by

H, = Cysinhx + C, coshy

where C, and C, are arbitrary constants, If' 1 is expressed in time and direction,

then the solution becomes

Hy = (Cysinhx +C,cos hx) e i



The boundary conditions cannot be applied directly to H, to determine thd
arbitrary constants C, and C, because the tangential component of H is not zero at the
surface of a conductor, However, E, can be obtained in terms of H, .

g'l“':n = joskE, [eqn. (4.4)]
ox ’
] 1 OH,
7 jos  Ox
_h_

~ jos |C, cos hx — C, sin hx] e 7*

Applying the first boundary condition (E, =0 at x = 0)
C, = 0



- h

Then E. = T C;sinhx eV
- £ jos
Applying the second boundary condition (E, = 0 at x = q)
sinha = (
mmn
h ==
a
where misamode m=1,2,3, .........
mm mn
T — ' — e -¥2
Therefore, E, josa C, sin ( - ) ¢
_[mm ,(g_:_r_t_)”:
e C, sin q ¥ e

. mi
- = " 2 A\ B ) » . - Y:
H, = C4cos ( P ) e



But YH, = joeE,
E, = 1 H

* Jjog Y

= 'l" C, cos (mx) B
joe a

The field strengths for TM waves between parallel planes are

mT A

H, = C,cos (—a—x) e”*

= ]EYE c4cos('-"—’1x)e-” > ... (4.9)

a

Imn . [ mm
E, = la-);; C, sm(‘;‘x)e"”' /



The transverse magnetic wave associated with the integer m is designated as TM,,
wave or TM,,, mode. If m = 0 all the fields will not be equal to zero i.e., E_and H,
exist and only E, = 0. In the case of TM waves there is a possibility of m = 0.

If the wave propagates without attenuation (a. = 0), the propagation constant
become y = jP. The field strengths for TM waves between parallel conducting planes
are : -

, )
H, = (3‘;c<)s(n;nx)e“’Bz
mmn s
E, = g)% C4cos( a x)e’B > ... (4.10)
mm .
E, = 7T C4Sln(”;nx)e‘m” .

= Wea



The field distributions for TM,, wave between parallel planes are shown
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Transverse Electromagnetic Waves
The field strength for TM waves are

H, = C4003(%n'x)e"’5‘ )
o B M\ -8z

E, = o Cacos{ ~"x e /P } .. (4.11)
_mm L (mm Y

15, = b C4sm( . x)e /p ]

For TEM waves E, = 0 and the minimum value of m=0.



H, = C,e’™
E, = ;)Ee_ C, e /B:
E, =0

These fields are not only entirely transverse, but they are constant in amplitude
between parallel planes.

Characteristics:

For the lowest value m = 0 and dielectric is air.

Propagation constant y = ‘\[0 ~—o'uyg, = jo -\/ ToR-

ﬁzﬁ)\]l—loeo




: 1

Velocity v = % \[p - = C
0%o

Wavelength A = % = ?

Unlike TE and TM waves, the velocity of TEM wave is independent of frequency
and has the value ¢ =3 x 10® m/sec.

The cut-off frequency for TEM waves is zero.
m
Je = 2a4\/ pe
This means that for TEM waves, all frequencies down to zero can propagate along
the guide. The ratio of E to H between the parallel planes for a travelling wave is

HER
H €

=0 (m=0)



The fields distributions are shown in
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Rectangular Waveguides

* Rectangular or Circular shape = simple lowest cost

* A hallow conducting metallic tube of uniform cross section is used for
propagation

* Waves are reflected from wall to wall

e Zig-zag fashion

* Maxwell’s equations are used to determine electromagnetic fields



Electromagnetic fields between rectangular waveguide

A rectangular waveguide



The Maxwell’s equation for non-conducting medium

VxH = joeE [ 6=0]

a, a, a,
_ 0 0 O 3 — - =
VxH = o G @ = joe (o, E,+a,E ,+a,E)
H, Hy H,
Equating x, y, and z components

oH, oH, )

3y ~ B = joe E,

OH, OH, .

5~ ax " J®E |

oH, o

3y _?Iiz = joeE,




Similarly VxE = —jouH
a, a, a|
VxE = 0 9 0
Ox 0y Oz
E, E, E,
Equating x, y and z components
J0E, OE 3
z =y .
ay 0z _.’(’)“Hx
OE, OE, .
oz ~ ox _ JOuH,
JcE OE
hose X _ .
ox ~ oy ~ JoRH.

—jon [a,H,+a,H, +a,H,]



Similarly for the wave equation,

o' "oy "o — TORE |
ox* " 9 | 87 OHEE
Let Hy - H:'c Yz
oH o ..
—a—-z‘u = —yHer —-—‘YHy
Similarly oH, = —yH,




Let E, = E: e V?

OE o

—l = o ¢ S

57 yEy e YE,
- OE,
Similarly 5z ~ —VE:

Substituting these values in equations 1,2, 3

= e 00 cev.. 4
dy +YH, = joeE,
OH, o <
ax +YHI = _jmeEy .....
0H, OH,
— _ = joeE, ... 6



5, H1E, = —JouH,
o,

ax +7Ex .]O)H'Hy

OE, OE

Sl X _ :

ox Oy ~JOp Ey

Wave equations thus become

0’°E, O’E,

62H o*H

— 2
Py +6y2 +y*E, = —o’uc E,

t o7 TYH = -opel,



Solving the following equations 5 and 7

+yH, = —joeE,

+
-
T
=
I
|
~.
e
g =
o

o
I
|
ds
|




H, y OE. YE, _

ox “jop oy ~jop /9%
OH, y OB, (¥ . )E
ox jop oy  Uop 1)
oH,  OE,
Jongy ~1% = Wreuak,
= W E

_y OH, joe OE,
Similarly, H, =3 52+57




Solving the equations 4 and 8

OH, .
3y +YH, = joeE,
o, _ .
ax +7Ex _'.]O),J'Hy
1 | OH,
. Joe [ Oy

Substituting E, in equation 8

c :
(%)) s

lllll



aE:z Y aHz - ( _ﬁ_)
Ox +ja)e oy U™ e H,
8B, oH, :
jos 22 4y 5% = — @hus + P,

— 2

= —h’H,
q = —fo)g aEz Y aH,
y ~ h* 0x  h* oy

—y OE ‘ oH
- _ Y z __]0)]1 z
Sumlarly Ex hz Ox h2 Oy




The following equations give the relationships among the fields within the
rectangular wave guide.

- OE, ~ Jop oH, )
* " p? ox  h* oy
E, - W aaliz *j(z;)g aaliz > o
ey
g ==Y OH, joe OE,

y Wt 8y  h* oOx



Transverse Magnetic Waves (TM) in Rectangular Waveguides

The wave equation in a rectangular wave guide is given by

62E 0’E, ,
yz +y*E, = —0°peE,

The solution of the equation is
E,(x,3,2) = E, (x,y) "

o

Let E = XY

z

where X is a function of x alone

Y is a function of y alone



Substituting the value.of E, in the wave equation

2 \ 2
dX d; YXY = — o’peXyY

d2X dz} + @2+’ pne) XY = 0
Substituting A% = y2 + o’ue
Then d2x di:f XY = 0
Dividing by XY,
1 d*X 1 d% _ 0

2 _
X a2 Y g



2 2
L X, _ o1 dY
X di Y 4y

The expression equates a function of x alone to a function of y alone and this can
be equated to a constant.

1 X
X dit B 5 A
1dX ., .,
X 72 TH-A" =0
Let B2=h2_A2

<
Q|
"o
+
e,
N
Il
S



A solution of the equation is
X = C, cos Bx + C, sin Bx

2
Similarly "Yl ";}' = A?

1dY 5 _
The solution of this equation is
Y = C;cos Ay + C,sin Ay

XY

(C, cos Bx + C, sin Bx) (C; cos Ay + C, sin Ay)
C, C, cosBxcos Ay +C, C,cos Bxsin Ay

ThenE,

+C, Cysin Bx cos Ay + C, C,sin Bx sin Ay



The constants C,, C,, C;, C,, A and B are determined by boundary conditions.
E:=0when5c=0,x=a,y=0,y=b.

When x =0, E. =0

o
4
o

E, = C,CcosAy+C,C,sinAy = 0

4

This is possible only if C, =0
Then the general equation is

o)

E, = C,C;sinBxcos Ay+C, C,sin Bxsin Ay
When y=0, E: =0

o

E. = C,CysinBx = 0

4

This is possible only if either C; =0 or C; = 0. If C, = 0, E: is identically zero



So, substituting C; =0
o

E. = C,C;sinBxsinAy

4

Let C = GC,

(o)

E, = CsinBxsinAy
Applying the boundary conditions in order to evaluate the value of constants A
and B.

Fx=a E. = CsinBasinAy = 0

-

This is possible only if B =ma— for all values of ¥

MmN

B = >3 where m=1,2,3, .........



I y=85, E, = Csin"_-xsinAb =0
This is possible only if A= "5~ for all values of x.
A =T where n=1,2,3

Hence E: = Csinﬁf'x sin'%ty

For propagation, ¥ =B (a = 0), the field expressions are as follows :
E: = :‘}L';E B cos Bxsin Ay

e —jBC
E, =-‘§!';LAsiancosAy



° oeC
H == A sin Bx cos Ay

x h2
° —joeC
H = ‘#—Bco'sBxsinAy
tere = %% and B="">
a

In the above expressions a and b are the width and height of the waveguide and m
and n are integers.

It is known B2 = B2 - A2
. A*+B? = p?
and B = v*+ o’ue

Yy = ‘\th-mzpe = \ A2+ B2 - olue



_ !..”!.7‘... E_’!.? 2
1T~ a + b — O HE

This is the equation of propagation constant for a rectangular guide for TM waves.
Cut-off [frequency and cut-off wavelength

Propagation constant is a complex number,
Y = a+jp
For low frequencies w’pe is small. Therefore the propagation constant y becomes

real a number. ie., y = a (‘s B = 0). It indicates that there won’t be any wave
propagation.

If the frequency is increased, a value () may be reached at which

2 nh nm \?
ok =70 ) %



- v V&) +(G)
This is the cut-off frequency. Cut-off frequency is the frequency below which
wave propagation will not occur.

The corresponding cut-off wavelength is

hg =5

/e



NG

If the frequency is greater than the cut-off frequency, the propagation constant y
will be imaginary.




Velocity of propagation

Propagation takes place only when the frequency is greater than the cut-off
frequency. The attenuation constant becomes zero.

o > () (%)
=i - (2] (5 )
b = o - (2] (5]

The velocity of wave propagation in waveguide

Propagation constant 7y

v=

[0}
B



RCROEG

The corresponding wavelength in the guide

- %
A= =

T o () (5
A = ?:n ; z [ © =2nf]
\f e (22 -(22)
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Electric field and magnetic field configurations for the dominant
mode in a rectangular wave guide



Transverse Electric Waves (TE) in a Rectangular Waveqguide

The wave equation in a rectangular waveguide is given by
0*H, 0°H,

ox2 ay?
The solution of the equation is

Hz (xvysz) = H: (x:y) e-‘yz

+y*H,.= —o’pe H,

Let H: xy) = XY

where X is the function of x only.
Y is the function of y only.



Substituting the value of H, in the wave equation,
d2X d’y

+ X7
Va2 d,v2

d 2X
dy2
where h?

+y2 XY = -0’ pe XY

|
()

+h2XY =

yz+a)2p.8
Dividing by XY,

1 d*X . d*yY

X dd " Y dy

1 d*X

X dx?

+h* =0

-1 d*Y
2 o =Lt 23
+ h 0




The expression relates a function of x alone to a function of y alone and this can be
equated to a constant.

2
2
)l(‘;:f +h*- A = 0
Let B2 = 42 - A2
1 2
X ‘g *B = 0

The solution of this equation is

X = C, cos Bx+C, sin Bx



2
Similarly, LA . @2

0

The solution of this equationis Y = C,cos Ay + Cssin Ay
But H: = XY

(C) cos Bx + C, sin Bx) (C, cos Ay + C,;sin Ay)
= C; C3cos Ay cos Bx +C, C, cos Ay sin Bx
+C, C4cos Bxsin Ay + C, C, sin Ay sin Bx



Ez'——xaEz .Lh-E—}{—

*  h* ox Oy
For TE waves E,=0.
Ex = h2 ay
- j_li[— C, C; Asin Ay cos Bx - C, C; A sin Ay sin Bx

h2
+C,C;AcosBxcos Ay + C, C; A cos Ay sin Bx]
Applying boundary conditions, E.=0 when y=0, y=5

If y =0, the general solution is
E, = L‘E[CI CisAcosBx+C,C AsinBx]=0



For E.=0, C,=0. (C, is common)

Then the general solution is
E, = "LE [- C, C; Asin Ay sin Bx — C, C; A sin Ay sin Bx]

If y=b, Ex=0.
nn

For E, =0, it is possible either B=0 or A = 7 - IfB =0, the above solution is
identically zero. So it is better to select A = n[:t
The general solution is

E, =% [C/CAsinAycosBx +C,C; Asin Aysin Br]

X



Similarly forE,,

- -y OE, ! op OH, OH,
y  h® oy h2 ox
! 1 OH,
h* ox C B0

[0 .
= J;%‘—[—C, C;BcosAysinBx+ C, C; B cos Ay cos Bx —

C, C4BsinBxsin Ay + C, C, B sin Ay cos Bx]

Applying boundary conditions
E,=0; x=0 and x=a



Ifx=0,

E, = 1—-2354- [C,CyBcosAy+C,C BsinAy]

For E, =0, C,=0

Then the general expression is

E. = ‘;:2 [~ C, C, B cos Ay sin Bx — C; C, B sin Bx sin Ay]

y
If x=a, then E: =

E: = :‘hLonE [C,C;BsinBacosAy+C,C,sinBasinAy]



° mm

For E, =0, B= .
E: = -L(;I%L[Cl C;BsinBxcos Ay+C, C,BsinBxsin Ay ]
E: J—E' [C; C; Asin Ay cos Bx +C, C; A sin Ay sin Bx ]

Substituting the value C,=C,=0

E = 1o C,C; Acos Bx sin Ay

x h2
j_th C, C3Acos(%1't')x sin(%t)y
o 0 y
E, = -£%- C,C,BsinBxcos Ay

®
= _thi C, C3Bsm(ngt)x cos(%’l)y



Let C = C, C,
g° - lop

. P C A sin Ay cos Bx
o [0
Ey = —-‘th" C B sin Bx cos Ay
nm
where A = 7 and B=""
Similarly for H_
" - -'Y aHz .(DS_a_E_{: -'Y aHz
W e Yoy Ko

For propagation, y =B, [ a=0]



; '3 OH,
po _ B

x K ox
‘ion OH
_ Jop z
But By =W ax
OH, h?
=, i ~B
ox jopu Y
op g aHz . ° .
Substituting the value of 5, ntheabove H  equation
o _ziB K
Hx i h? . Jou E.V

_:QEO

op Y



Substituﬁng the value of Eo in the above H: equation

H = =B [—‘1;13“— CBsmecosAy]

b (Dl-lv

H = B CB sin Bx cos Ay

x h2
H: - ﬁ%‘ CB sin("'nf)x cos("%t')y
Similarly for H_
b = =l 0H, jos OE,

y  h: 9y ~ h® ox
_y oH,
h® 0y

[ E,=0]



For propagation, y=p. [** a=0]

H° - —jB OH,
Y h* 0y
_ —jop 94,
aHz h2
ay = };’;‘ E,

oH,
Substituting this value of -07 in the above II equation

Cp R o B e
h?  jop B, = op =

‘e



Substituting the value of E, in the above H: equation

© o B [lop ]
H, (DH[ % C A sin Ay cos Bx

Hy w‘CAcosBxsmAy

LQ CAcos(mn)x sm(%ﬁ)y

H
a

“ o

H, = XY

N 0

= C, C;cos Ay cos Bx + C, C; cos Ay sin Bx
+C, C, cos Bx sin Ay + C, C, sin Ay sin Bx



But C, = C;,=0
H: = C, C;cos Ay cos Bx
C =C(C, G
H: = Ccos Ay cos Bx
° e, 241
H, = Ccos( p )xcos( h )y



The field equations for TE waves are as follows :

e =48

x T p2 CB sin Bx cos Ay
H: ﬁ% CA cos Bx sin‘Ay
H: = Ccos Ay cos Bx
E: L,?%'CA cos Bx sin Ay
E; = :‘h&;p— CB sin Bx cos Ay
- I
where A=%1£andi3";n |



v and A are found to be identical to

.

For TE waves the equations for B. f A
those of TM waves.

. mr ) (mxY
B = mps-(a)-(

1

fe = 2n-\l- T

The corresponding cut-off wavelength is

N R




The velocity of propagation

Vv

Q
B




Impossibility of TEM waves in Waveguides

* Transverse electromagnetic (TEM) wave do not have axial component
of either E or H, it cannot propagate within a single conductor
waveguide



BESSEL FUNCTIONS

In solving for the electromagnetic fields within the circular waveguides, a
differential equation known as Bessel’s equation is encountered. The solution of the

equation leads to Bessel Functions.
The differential equation has the form

o L (2 _
dp? +pdp+ 1-p2 P=0 where n=0,1,2,3,.........

'l'h? solution of this Bessel's equation can be obtained by assuming a power series
expansion. |

' » 4.+ + 3 4
I agta,ptayptto...



For special case (n = 0), the Bessel’s equation becomes
d*P 1 dP
_— == 4P =90 5o Led)
ap?  p Op
Substituting the value of P in the above equation and equating the sums of the

coefficients of each power of p to zero.




The series is convergent for all values of p either real or complex. This is called
Bessel's function of the first kind of order zero and is denoted by J, (p) = P, for

n=0.

The corresponding solutions for n = 1, 2, 3, ...... are designated J,(p), J,(p),
b 151 ) - where n denotes the order of the Bessel’s function. Fig.5.1 shows the

Bessel functions of first kind of different orders.



+10
+08
+06
+04

Jn(p)

+0.2

-0.2
-04

— Jo(p)
J
1/r-' 1(p)
Ja(p)
g
2 4 6 10
P

Bessel functions of first kind of different orders
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The zero order of the second kind is,

1 2r
2 2 & ('2"’) 1,1 1
No(p) = ;[1"(%)*'7] Jop) = = EI )" ) (1+5 t3 t ] )
The complete solution of the equation

P = AJyp) + BNyp)



F1g.5.2 shows the zero order Bessel functions of the first and second kinds

+08 \\/ Jo(p)
= Q
4
= 0
a [
a
S -04
-08 ..}
‘ 0 2 4 g 8 10 12 14

P
Zero-order Bessel functions of the first and second kinds



TM Waves In Circular waveguide

For Transverse magnetic (TM) waves, H, is identically zero. The boundary
conditions require that E, must vanish at the surface of the guide.

S, (ha) = 0
where a is the radius of the guide.

There are an infinite number of possible TM waves corresponding to the infinite
number of roots of J, (ha) = 0.

The first few roots are (ha)y, = 2.405

(ha),, = 3.85
(ha)y, = 5.52
(ha);, = 7.02

The various TM waves will be referred to as ™,,, T™M,,, etc.



The propagation constant Y = \] h? — w2ue
For propagation, y = JjPB

B = \/ e —h?_
ol pe = £,

f hnm

“ 2n e
where h = )

a

The cut-off frequency

_ @

© _ _ ®
B Jorpe- K2,

The phase velocity is V=



The field equations for TM waves are given by

thp =j0_)'§ QE’-.

h2H¢ = _jme S —1

N
)
1]
I
l
.




The expression of E, for TM wave is
E° = A,J, (hp) cos nd

< N "L 5
op  n op
OE.°
64; = —A,nl], (hp) sin n
Substituting these values in equations .
. —JA,0en] (ph)sinné
H° = np
—-J A, 0e 0], (hp)
Hy° = 0S n
' h 5p  cosné



aJ, (hp)

Epo = _jBAnh ap coan) ['."Yzjﬁ]
"o W [ y=JB)
Eye° = Lg A, nl, (hp) sin no
-B

_— o)
WE Hp



TM waves in circular waveguide



TE waves In Circular Waveguide

For transverse electric (TE) waves, E, is identically zero. The field equations for
TE waves are given by the equations

L OH,
H, = <Y Bp
oH
R e
Py = =0 B
th - -jmp' aHZ
P p 0¢
OH,
W E, = jou

op



The expression of H, for TE waves is
He° = C,J, (ph) cos np

° ho I (ph
G;Ip = C, a,,;p ) cos nd
oH.°
el
Substituting these derivatives in equations
s o B Gy 23, ()
P h op

, _JBnC, ,
H)® = 7o J, (ph) sin nd

= —C,nl, (ph) sin np

cos nd




Er° —”’;—E C,nl,(ph)sinnd = "BE H’

By = l—hE G, 3p cos n

_ =Op
= 3 Hp°
A e . . OH,
The boundary condition is E, = 0 at p = a. Since E, is proportional to 2p °
dl (ha
()
ap

I, (ha) =



The first few roots of this equation are
(ha), = 3.83

(ha),, = 1.84
(ha) ,, = 7.02
(hay,, = 5.33

The Corrcspondmg TE waves aré referred to as TEOI’ T-E”, —rElﬂ and TEIZ’
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WAVEGUIDE CAVITY RESONATORS

Waveguide cavity resonators are formed by shorting the two ends of a section of a
waveguide. Waveguide cavity resonators are :

1. Rectangular cavity resonator

2. Circular cavity resonator



RECTANGULAR CAVITY RESONATOR

The geometry of the rectangular cavity resonator is shown in F Ig.

........................

y
l ""‘ — /
z s - a :

Rectangular cavity resonator




Transverse Electric (TE,,,,) Mode :
The magnetic field expression in the z direction is given by

H, = Hocos(m:x) cos(ﬂ;‘z) sin(%)

where m=0, 1,2, 3, ... represents the number of the half wave periodicity in the
x direction.

n=0,1,2,3, ... represents the number of the half wave periodicity in the
y direction.
p=1,2,3,4, ... represents the number of the half wave periodicity in the
z direction.

The electric field in the z direction is

E, =0

4




The magnetic field in the x direction is
1 0°H,
*  h? 0x0z

2 _ (mnY (nnY P_"_)z
where A (a)+(b)+(d

X h?® Ox 0z

h* Ox a

_ nm
- ] ()2 (22 (52

2 nmy
o 1 0 [HOCOS(mZx)COS( )sm(

zz_nz)
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nz | pTt
Hy 5 [cos(_m_y_) cos(ﬂg}i) cos ( d
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ezt ) |




The magnetic field in the y direction is
1 0°H,
H, =~ h* 0y oz

2 nm . | pTZ
b g [ (22) (23 ()
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The electric field in the x direction is

o )0 oH, .
x —  p* Oy

4 ¢

_ jop Hy (mt) (
E, = ;2 p ) €os

The electric field in the y direction is

3 ij 6Hz
y ~ h® Ox

E

e T —



‘o 0 .'_”_E_%‘.) (
=]712 6x[H°°°S( . )

_ :jmp Eo (_”_’.ZE) sin(m::x) cOS

h? a

Transverse magnetic (TM,,, ) Mode :
The electric field in the z direction is given by

E. = E; sin(m:x) sin(lg)") COS

b7
-
(¢']
a
- 0 3
| Il I
Ll —
N et e
W N
;‘“",ﬁ"



Magnetic field in the z direction is

H,=0
The electric field in the x direction is
1 O,
E - p)
x h- Ox 0z

2 _ (mn)  (nzm)? (@)2

where A ( p ) +( 5 ) 7
1 @ . (mnx\ . (nny prz )
E = 22 ox Oz E, sin q ) Sin Cos| 7 )

b
_‘an[-("m«‘f) (m . (pnz) pr |
= 2 ax | St 4 ) sin| T )sm( 7 ) .




-Eo(pn( mn
e, = 5752 ) ood ™55 in( 722 in (222)

The electric field in the y direction is
1 O%E,
Y h? 0yoz

1 0 . (mnx ) . )
= 23 3y 0z [EO sm( ) sm(w—;‘z) CoS (%)

E




I'he magnetic field in the x direction is

l l ‘[(l)!: Q.t:'.
)
A h “ “) -

- joe O E i mmnx
E, sin

h* )

The magnetic field in the y direction is

__[ e 0 l
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For either TE,,,, or TM,,,,, mode :
At resonance

(0(2, HEe = h?

I
o
3
|3

% \he

Resonant frequency is given by

f0=21t\/—;:s_
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I
N
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Circular cavity resonator

Circular cavity resonator



Transverse electric (TE,,,,) mode :

The magnetic field intensity in the z direction is given by

!

H, = HOJ,,(x'"" p) cos (nd) sin(l’-’—‘i)

a d

where ) n 18 the Bessel’s function of the first kind,

H, is the amplitude of the magnetic field,
m=0,1,2,3, ... is the number of periodicity in the ¢ direction,
n=1,2,3,4, ... is the number of zeros of the field in the radial (p) direction,

P=1,2,3,4, ... is the number of half waves in the axial (z) direction,



a
X is the m™ root of equation J, (ha) =0

The other field components in p, ¢ and z directions are

E, = 0

2 ’
H, = -H, (?) (g) (x—,a_‘ J,,(x";"p)sin (nd) cos (%)
H, = H, (%n)(x? ]J:, (x,,zp) cos (nd) cos (P%)
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Transverse magnetic TM,,, mode :

The electric field intensity in the z direction is given by
Xnm P prz
E, = EOJ,,( a )cos(mb)cos( y )

The other field components in p, ¢, z directions are :
H, =0

e - 2 (3)(2) (2] (22 s

E, = -E, (%) (x:,, )J; (x,,zp) cos (n¢) sin(

)
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R
N
S——
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xﬂnl nz
= _].EO(DS( a )J' ( ap)cos(n(!))COS(Ld—

xﬂﬂl

= —j Eoma( L )2 J,,(x";p) sin (n9) COS(

xmn

where ], is the Bessel’s function,

E, is the amplitude of the electric field,

x, is the m™ root of equation J,, (ha) =0
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Resonant frequency :
For TE,,, mode:

At resonance, oZpe = h?

Since h?

|
TN
8
| 3
—
N
+

The resonant frequency for TE mode :

- S - (8]
0 21;‘\/_”; a d




For TMW mode :

At resonance,

Since

0 pe = A
=
Wy pE = (
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Circular cavity field configurations

(Left hand side is the cross-section through PP°)



The resonant frequency for TM mode :

iz (T
" 2n HE “ d

where x,,, is the m" root of the equation J’ (x) =0,

x,, is the m™ root of the equation J, (x) = 0.

The dominant mode in a circular cavity will depend on the dimensions of the
cavity.

For d <2a, the dominant mode is TM,,

For d 22a, the dominant mode is TE,,, .

The important mode for its high quality factor Q is TE,,, .



. A rectangular waveguide of cross section 5 cm x 2 cm is used to propagate TM,,
mode at 10 GHz. Determine the cutoff wavelength. [November 2011]

Given: a=5cm b=2cm
T™M mode, m=1, n= ]

o= - == / ' =3.714cm




. A rectangular waveguide has the following dimensions /=254 cm, b =127 cm.

Calculate the cutoff frequency for 7E  mode.

Given: a=254cm b=1.27cm

TE, mode m=1, n= 1.

The cutoff frequency is given by,

2 :
1 J( m;z')’ ( n;r)
_ +| — —_
27\ pE a b

j}—:.

__3><108 [
fr- 2 V

f.=13.205 GHz

2
] :l [
) +
2.54%10 1.27x10 ~

[November 2006]

where V=3 x 10°m/s



A rectangular waveguide mesures 3 x 4.5 cm internally and has a 10 GHz signal
propagated in it. Calculate the cutoff wavelength, the guide wavelength and the char-
acteristic impedance for 7E , mode [Dominant mode]. [November/December 2007]

Given: a=45cm, =3 cm. /= 10GHz

TE mode, m=1, n=0.

1) The wavelength is free space,

Vo 3x10® .
ig=— = = 09=0.03m
f 10x10

ii) The cutoff wavelength is given by.

2
Ar = i = A- =0.09m

G (i) w0

2

"‘\




iii) The guide wavelength is given by,

: 0.03
Ae = .- = = . =0.0318m

‘ - | 2
27 )
\ (/(, Y lo.09

fvy Wave impedarice is given by,

Z 110 55 =

(]

oL [f-'.’.izh a0 ) | I
‘/, ZJIIJ ’ ZV! /”} J =34 CiHy,
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UNITV RF SYSTEM DESIGN CONCEPTS

Active RF components: Semiconductor basics in
RF, bipolar junction transistors, RF field effect
transistors, High electron mobility transistors
Basic concepts of RF design, Mixers, Low noise
amplifiers, voltage control oscillators, Power
amplifiers, transducer power gain and stability
considerations



Active RF components: Semiconductor basics
In RF

The operation of the semiconductor devices depends on the physical behaviour of
the semiconductor used. The most commonly used semiconductors are germanium
(Ge), silicon (Si) and gallium arsenide (GaAs). When the temperature is zero degree
Kelvin (T°K = 0) all the electrons are bonded to their atoms and the semiconductor
behaves like insulator. When the temperature increases, some electrons attains
sufficient energy to break up the covalent bond and cross the energy gap
E, = Ec — Ey. At room temperature, the band gap energy E, = 0.62 eV for Ge,
E = 1.12 eV for Si and E, =142 eV for GaAs. When an electron breaks the covalent

bond, it tends behind a positive charge vacancy which is called hole.



Let 1 be the concentration of conduction electrons

p be the concentration of holes
The concentration obey Fermi statistics.

—E
n = Nece kT

F

p = Nye it
Where N is the effective carrier concentration in conduction band
Ny is the effective carrier concentration in valence band

Ep is the Fermi energy level

k is the Boltzmann’s constant

In an intrinsic semiconductor, the number of free electrons produced by thermal
excitation is equal to the number of holes.

Le. n=p=n,

Il
-~

np i



In a semiconductor both electrons and holes are contributing to the conductivity of
the material. The conductivity (o) is given by

G =qgnp,tqpp,

where ¢ is the charge of particle

1, is the mobility of electrons

1, 1s the mobility of holes



Free electron
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The electron concentration in »# type semiconductor
n, = ND +pn
where Np, is the donor concentration

p,, is the minority hole concentration

ND+-\/N%+4n,.2
n, = 7
~Np +~ N + 4 n?
Pn = 2
If Np >> n,, Son, = Np

pn D



Pn

u

~
o~

4 n?
- Np +Np 1+2ND

2
n
i

Np

2

The hole concentration in p-type semiconductor

where

IfN, >>n,,

P

p P

Pp

P

n

R

Q

Ny + 1,

N, is the acceptor concentration

n_ is the minority electron concentration

Ny++/ N2 +4n?

2

—N,+4/ N2 +4n?




Bipolar junction transistors
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(b) Input characteristic of transistor (c) Output characteristic of transistor




Forward Active Mode

Forward biased B Reverse biased
junction

junction \{ o -i. W

@
C
ps =0 ™
A
. |
L\ = dg X = d3£+ d—(;’x




The diffusion current due to holes in emitter is

3 dp (x)
"pdlll Ty l)/ (/x i
- (f l)',' i .
- --—-—1-—(/" p” (0) - ) (- d;) l
hilsatitiiting tha vahiaeaf nb
Substituting the values of p,
¢ D" ,
l = —l B V!V B
‘Ip diff d“ (l m ¢ I)n” )
E K
gD p
. g€ i 10 VooV
Iy ar © d, (" i l)

The diffusion current due to electrons in base is

[ dn" (x) ]

i - I3
Jndlll’ q Dp dx

B e
4D, n® (dy) - n® (0)
(]“ T F] P

il




The forward base current is

E _.E
gD, p,

p dll] l/ﬁ
The forward emitter current I is the sum of collector current and base current,

Forward current gain . is
Be = 1

S = s dr e VBE/ VT 5> 1]
Dp pno dB q Dp ])

Collector current to emitter current ratio o is given by

Lrc _Br

oy =
B P R T



Reverse Active Mode

Reverse biased B Forward biased

junction junction
oKk f oD




Since emitter-base is reverse biased, minority charge concentrations (p,’ ) are zero.

The minority charge concentrations in base at distance x = 0 and x = dj.
B B ,Vee/VT = o
n, (0)n 5, B

B = B a¥ec! Yt
n, (dp) n, ¢

The minority charge concentrations in collector at distance x = d and x = d + d.

pe(dg) = pS e'oe’'T
p, dy+do) = py
The reverse emitter current I is given by
ke = —J5ar A
B
= g B (%‘) A
el DE

TB—[ n, (0)—n, (ds) ]



Reverse current gain [5,, is given by

g = I
1 Vm,'

B B
n.py
¢ C
D, Py, dy,
l.';dr:
[)C )(,'
p I"n

s

3

TIPS

Reverse collector current to reverse emitter current ratio o, is given by

- ( Iw: J
|
'mz

Pr

14 Pp

Vie



Saturation Mode
For saturation mode, both the junctions are forward biased. The diffusion current

density in the base is the algebraic sum of forward collector current and reverse
emitter current

B
Joar = =Ject Jpe

Voo IV Ve IV
S BE T BC 3
Ipe = Irc I e + g e

The emitter current is given by

Ig = Ippg=lpc—Igp

I
’ F
Add and subtract I,
I
Vap/V Vne!/V S ¢/ Vpr/V
Inz._lse BE T+Is+]senc T—]s—-ﬁ(c BE T...l)

I
w, e (chz’VT_ 1)_55;(8"0&/"1_ 1)+ I (e"nc/Vr _ 1)



The collector current I~ is

Ie = lpe—Iget g

I
Vae/V VinlV S Non IV
] ISe BE’ ' T _]Se BE* T _.""""(e BC T....l)
R

Add and subtract Ig,
I
[ = Igevoe!Yr —I e VBc/VT +IS_-S;(3VBCIVT_ 1)
= I, (g¥ee! VT L 1)_15-(3"90/"1'_ 1)L (g Yot Yl
R

Base current I ; is given by

= =lp=lp

- IS[B}:(GVBC’VT_ 1)+-1;(8VBE’VT - 1):|

I



RF FIELD EFFECT TRANSISTORS

(i) Metal Insulator Semiconductor FET (MISFET): Gate is connected to the
channel through the insulation layer. (Metal oxide semiconductor FET
(MOSFET) belongs to this type (Fig.5.11(a)).

(i) Junction FET (JFET): The reverse biased pr junction isolates the gate from
the channel. (Fig.5.11(b)).

(iij) Metal Semiconductor FET (MESFET): The reverse biased pn junction is
replaced by a Schottky contact as in JFET (Fig.5.11(c)).

(iv) Hetero FET: The hetero structures utilise abrupt transitions between layers
of different semiconductor materials (GaAlAs to GaAs). High Electron
Mobility Transistor (HEMT) belongs to this type.
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‘a) Metal insulator semiconductor FET (MISFET)
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(c) Metal semiconductor FET (MESFET)




(a) Operation in the linear region (b) Operation in the saturation region



The resistance (R) between source and drain is

L
R = s@-d)N

where Conductivity, ¢ = g p, N,

W is the gate width.

Vbs
R

2e5€,( Vy;—Vigs
G"[l_qd’( Np )]VDS

oW,
L

The drain current is I, =

where  Conductance, G, =
The drain saturation voltage is

g N, d?
VD sat = 2¢ - (vd - VGS)

VGS = VTO




g Npd i
where  Pinch-off voltage, V, =

28,8,
Threshold voltage, Vqy = V,-V,

The drain saturation current is

\Y
Ipsat = Go['jﬂ—(vd‘vcs) ¥

Vs \
- Tow(1-72)
DSS Voo

where Ipgq is maximum saturation drain current

\ 2

Ipss = GO[_32"VJ+3 N,
p

3

p

Vp

(Vb—Vags)

v |

W
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(a) Transfer characteristic (b) Output characteristic




HIGH ELECTRON MOBILITY TRANSISTOR
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Schottky |
contact

(a) Energy band diagram (b) Close-up view of conduction band



To determine the potential distribution along the x-axis, Poisson’s equation is

used.
dlvm _  pkx)
dx? N
p(x) = g Np
(12V(x! _ 4Np
dx*> £

where  Np is the donor concentration in GaAlAs hetero structure

£y Is the dielectric constant in GaAlAs hetero structure

By applying boundary conditions at metal-semiconductor side
AE
Vix=-d) = -V, +vG+TC
where 'V, is the barrier voltage



Vg
and V(x=0)

Potential at metal-semiconductor

V(-d)

where, E, (0)

where, Threshold voltage, V,

Pinch-off voltage, V,

Il




The electron drain current is given by

Ip
But o

Ip

Ip

But ¢ =

where L

Ip

= cEyA

qg 1, Np and A=wd

Il

g un,NpE, wd

| dV dV
= q}lnNo(dy)wd [ Ey_dy]
_an _-p'an
wLd = d

[ ** Surface charger density Q, = 2

is the channel length

1, Q,
=0EyA= dgE’\Vd

dV
H,QswE = HanW—‘E



LOW NOISE AMPLIFIER

Bipolar LNA

The simple common emitter LNA is shown in Fig.5.16(a). The transistor Q, and
current 1, are used to bins the transistor Q. Resistor Ry isolates the signal path from
the noise of Q,. IR, >> Ry, the effect of bias circuit upon the LNA’s performance
can be neglected.

The input referred noise voltage per unit bandwidth is given by

= 1 . l : Vy
V, = 4Kkl (r,,%,—}';-) = 4kl‘(r,, Fﬂ(‘)

“om
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(h) LNA with base shot noise



The total input referred noise voltage including the source resistance Ry is

5 | BT
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Cascode CMOS LNA




MIXERS

RF power
Mixer amplifier

IF RF

LNA Mixer

NG IF
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(a) Upconversion (b) Down conversion



Signal Ended Mixer Design
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(b) FET Mixer



Double Balanced Mixer
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Power Amplifiers - Introduction

RF amplifier designs are differ significantly from low-frequency circuit
approaches and require special considerations.

Most of the amplifiers can oscillate when terminated with certain source and load
impedances.

Matching networks can help stabilize the amplifier by keeping the source and
load impedances in the appropriate range.

In the amplifier design process, stability analysis is a first step.

Gain and noise figure circles are the basic requirements needed to develop an

amplifier circuits to meet the requirements of gain, gain flatness, output power,
bandwidth, and bias conditions.



Amplifier Power Relations

* Generic single stage amplifier configuration with input and output
matching networks is shown in fig.

RF
source

Input
Matching
Network

(IMN)

out

I'g Ik
l__<.> ': 1
i | Output .:
W o - Matching i
5 [@ E* Network _!"H"'
in DC bias I

Fig. Generic amplifier system

Load




* Input and output matching networks are needed to reduce undesired
reflections and improve the power flow capabilities

* Here amplifier is characterized through its S-parameter matrix at a
particular DC bias point

Key Parameters of amplifier, to evaluate its performance are
i. Gain and gain flatness (in dB)

ii. Operating frequency and bandwidth (in Hz)

iii. Output power (in dBm)

iv. Power supply requirements (in V and A)

v. Input and output reflection coefficients(VSWR)

vi. Noise figure (in dB)
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(b) Signal flow graph

Source and load connected to a single-stage amplifier network



RF Source

* RF source is connected to the amplifier network

Incident Wave power:

The incident wave power at node by is given by,
2

bl
P; _ b
inc 2
— 1 |bS|2 91
2 |1_Finrs|
v Zo
Where, Source node b, = Vs
Zs+Z,

Z, — Characteristics Impedance , Zs —Source Impedance

I'¢- Source Reflection Coefficient and I', - Input Reflection Coefficient

This incident power is nothing but the power launched toward the amplifier.



Input power:

The actual input power Pin at the input terminal of the
amplifier is composed of the incident and reflected power waves

P,=PlI-I,[)) (@

in

Sub P;,. value in above equation,

P,=- b -
2 ll _I-‘mrSlz

)0

r:‘n




Maximum Power Transfer:

If the input impedance is matched with complex conjugate of
source impedance (Z;,= Z;) or in terms of reflection coefficients
(I, = 1Y), then the maximum power transfer from the source to the

amplifier will be occur.
The maximum power transfer from the source P, is,

Py = Pianm: I

2
- 1L (-1 f)
2|11, I Tm=Ts ™ T
2
S
2 2 d
I



......

This expression (4), mainly dependent on I

If [, =0 and I’y #0, then equation (4) becomes,

p-bd
2

......



Transducer power gain is nothing but the gain of the amplifier when
placed between source and load.

Power deliveredtotheload ,
~ Available power from the source

G



Substitute equations (4) and (7) in equation (6), we get

2

6r =22 (-0, 7) -

bs

From the Fig we can get by and bs

b, =

bs
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I“Szer
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From the equ (9) and (10), the required ratio —= can be calculated

S
b, _ S,
bs (l“surs)(l“Szer)"Szlslerrs'

Substitute equ (11) in equ (8), we get

NP 1) N
l(l - Surs )(1 - Szer )" SZISI2FLFS|2




Unilateral power gain(Gry):

When feedback effect of amplifier is neglected i.e.S);, = 0. It is called unilateral
power gain.




Additional power relations

Available Power Gain (G,4) at Load:
The available power gain for load side matching (I';, = I[;,;) is given as

- Power available from teh network
A —

Power available from the source

Syl -
G, =4—20t \ rst; ... (14)
Y- -8 T[




Power Gain (Operating Power Gain):

The operating power gain is defined as “the ratio of the power

delivered to the load to the power supplied to the amplifier”.
Power delivered to the load

b= Power supplied to the amplifier
P P
e L s GT —A
Pin Pin
_ b .PA _ (1—|I‘,:~|2),82,|2
PA n (l—I",-,, Z)I—Szerlz




Stability Considerations

* An amplifier circuit must be stable over the entire frequency range

* The RF circuits (amplifier) tend to oscillate depending on operating
frequency and termination

(i) If |I'| >1, then the magnitude of the return voltage wave
increases called positive feedback, which causes instability

(oscillator)

(ii) If || < 1, the return voltage wave is totally avoided (amplifier). Its
called as negative feedback

Two port network amplifier is characterized by its S-parameters

The amplifier is stable, when the magnitudes of reflection coefficients
are less than unity

IT; | <1 and
IT5| <1



Stability Circle

Output Stability Circle: The output stability circle equation is given by
(F If - Crffu )2 + (rif - C(I)ur )2 =T, afu

ITwl=1 'SRNG

~
““““
""""""

Output Stability circle

I,,|=1 in the complex T, plane
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Where, A = 8)1S;, —8155,

Center of output stability circle C,, =C/} + jC/,

(Szz — SI'IA)‘
Sul” -]

When I,

|SI I| two stability domains of output stability circles are



(i) For |S,,| < 1, the origin ( the point I, =0) part is in stable region. Here

shaded region is stable.

I
'L | Tin [ =1
Unstable 4 P .

el

|Tpl=1

Output Stability Circle denoting the stable regions when 1Su| <1



(i) For |S,| > 1, the origin (the point T', =0) part is in unstable region.

Stable

Unstable

S

T 1=1

Output Stability Circle denoting the stable regions when |S,,| >I



Input Stability Circle:
Input stability circle equation is given by

e R

Circle radius r, = IS‘22S211 : )
|lSn| "|A|

Center of the input stability circle C, = C:ﬁ + fci,

(Sll “SszA).
|Sn |2’ - |A|2




IFgl=1

Input stability Circle IFM ‘ =] in the complex I'; plane



Two stability domains of input stability circles are:
(1) When |Szz| < 1, the center (I'y =0) must be stable.

Unstable

Input Stability Circle denoting the stable regions when IS 22[ <1



(ii) When |S,, | > 1, the center (I's=0) becomes unstable.

Stable

Unstable

Fgl=1

Input Stability Circle denoting the stable regions when |S;,| > I



Stabilization Methods:

If the operation of a FET or BJT is unstable, we take steps to make
them stable

The instability conditions |I;,,| > 1 and || > 1 can be written
in terms of the input and output impedances

|l"m| = LZin — Ly ~1 Above expression implies that
L. +7Z,
Re(Ziy) <0 and
lZ_ -7
Lol = 1757 Z° >1 Re(Zow) <0
out 0

To stabilize the active devices, a series resistance or a
conductance will be added to the port



Configuration at input port:

In the input port, the addition of R,(Z¢) must compensate the
negative contribution of R,(Z;,,)

’

Zin * Rjp
4
Rin
| —0—-_% ......
Active Device
Source HF. — (BJT or FET)

Zin
Stabilization of input port through series resistance
Re(Z, +R,, +Zg) >0



Stabilization of input port through addition of shunt conductance.
Yin + Gi'n

G, Active device
saaslis n (BJT or FET)

.

. Yin
Stabilization of input port through shunt conductance

Re(Y;, +G;, +Ys) >0



Configuration at output port:

In the output port, the addition of R,(Z;) must compensate the
negative contribution of R,(Z,,;)

Re(Z . +R., +Z,) >0

r
Zout * Rout

’
Rout
------ -——-W 40-—
Active Device . Load
(BJT or FET) -
...... O—
Zout

Stabilization of output port through series resistance



| J
Yout + Gout

"""" Active O—
| device . Load
(BJT or Sout e
FET)
l

Yout

Stabilization of output port through shunt conductance

Re(Y,, +G., +Y.) >0



