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Course Material
Unit -1
TRANSMISSION LINE THEORY
Find the reflection coefficient of a 50-ohm transmission line when it is terminated by a
load impedance of 60 + j40 ohm.
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K =0.35124.01
Equivalent circuit of a unit length of a transmission line:
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Infinite line:

When S=p, in the infinite line the travelling waves continue in one direction
indefinitely and there is no source of energy or discontinuity to send back a reflected
wave along the line.

Delay distortion:

For an applied voice-voltage wave the received waveform may not be
identical with the input waveform at the sending end, since some frequency
components will be delayed more than those of other frequencies. This phenomenon
is known as delay or phase distortion.
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Unit-1I
HIGH FREQUENCY TRANSMISSION LINES

Input impedance of open and short - circuited dissipation less line:

Short circuited impedance The open circuited impedance

Z,; = Z,tanhyl Z, = Z,cothyl

State the assumptions for the analysis of the performance of the radio frequency line:
1) Due to the skin effect, the currents are assumed to flow on the surface of the
conductor. The internal inductance is zero. 2) The resistance R increases with f while
inductance L increases with f. Hence oL >> R. 3) The leakage conductance G is zero.

Standing wave ratio:
The ratio of the maximum to minimum magnitudes of voltage or current on a

. . . ) ) E max ‘Im ax‘
line having standing waves called standing wave ratio. S = —

E min \Im in\

Input impedance of a dissipation less line:
. . L L =Rol+k-25s1
The input impedance of a dissipation less line is given by, Zs= IIE—S ——r -2
S - -25s
Range of values of standing wave ratio:
The range of values of standing wave ratio is theoretically 1 to infinity.

Relation between SWR and reflection coefficient:
‘1 + l} ‘ K‘ =s-1
S= ‘1—k,AIso s +1

'
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Unit— I
IMPEDANCE MATCHING IN HIGH FREQUENCY LINES

Use of eighth wave line:
An eighth wave line is used to transform any resistance to an impedance with
a magnitude equal to Ro of the line or to obtain a magnitude match between a
resistance of any value and a source of Ro internal resistance.

Input impedance of eighth wave line:
The input impedance of eighth wave line terminated in a pure resistance Rr. Is
given by Zs = (Zr+jRo) / (Ro+ j ZR). From the equation it is seen that | Zs | = Ro.

Impedance inverter:
A quarter wave line may be considered as an impedance inverter because it
can transform low impedance into high impedance and vice versa.

Copper insulator:

An application of the short -circuited quarter wave line is an insulator to
support an open wire line or the center conductor of a coaxial line. This application
makes some of the fact that the input impedance of a quarter wave line is very high,
such lines are sometimes referred to as copper insulators.

Double stub matching is preferred over single stub matching:
Double stub matching is preferred over single stub due to following

disadvantages of single stub.

1. Single stub matching is useful for a fixed frequency. So as frequency changes the
location of single stub will have to be changed.

2. The single stub matching system is based on the measurement of voltage
minimum; hence for coaxial line it is very difficult to get such voltage minimum,
without using slotted line section.

1. Design a quarter wave transformer to match a load of 200€ to a source resistance of
500 Q. The operating frequency is 200 MHz.

RO = v/zzx = +/500x200 =316.22 Q.

A=C/f=15m A/4=0.375m.
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Unit -1V
WAVE GUIDES

TEM wave or principal wave:

TEM wave is a special type of TM wave in which an electric field E along the
direction of propagation is also zero. The Tem waves are waves in which both electric
and magnetic fields are transverse entirely but have no components of Ez and Hz. It is
also referred to as the principal wave.

Characteristics of TEM waves:
a) It is a special type of TM wave.
b) It doesn’t have either E or H component.
c) Its velocity is independent of frequency.
d) Its cot-off frequency is zero.

Dominant mode for the rectangular waveguide:

The lowest mode for TE wave is TEio (m=1, n=0) whereas the lowest mode
for TM wave is TM11 (m=1, n=1). The TEio wave has the lowest cutoff frequency
compared to the TM 11 mode. Hence the TE10 (m=1, n=0) is the dominant mode of a
rectangular waveguide. Because the TEio mode has the lowest attenuation of all
modes in a rectangular waveguide and its electric field is definitely polarized in one
direction everywhere.

A rectangular has the following dimensions | = 2.54 cm, b = 1.27 cm. Waveguide
thickness = 0.127 cm. Calculate the cut off frequency for TE11 mode:
A rectangular waveguide has the following dimensions:
a=2.54 cm, b = 1.27 cm, Waveguide thickness = 0.127 cm.

1 m n
fc= / 2+ 2-11506Hz
2 a b

a=254x10"2 x 0.127 = 0/02286 m b=1.27x107% x 0.127 = 0.01016 m.

Quiality factor of a resonator:
The quality factor Q is a measure of frequency selectivity of the resonator. It is
defined as Q = 2 x Maximum energy stored / Energy dissipated per cycle =W / P.
Where W is the maximum stored energy, P is the average power loss.
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Unit—-V

RF SYSTEM DESIGN CONCEPTS Comparison of conditional and
unconditional stabilities of an amplifier:

Conditional stabilities

unconditional stabilities

Conditional stabilities refers to a network
that is stable when its input and output see
the intended characteristic impedance Zo

Unconditional stabilities refers to a network
that can see any possible impedance on the
smith chart from the center to the perimeter
at any phase angle. Gamma<1 means that the
real part of the impedance is positive

If there is a mismatch, there is a region of
either source or load impedances that will
definitely cause it to oscillate. The term
potentially unstable refers to the same
condition

Note that any network can oscillate if it sees
a real impedance that is negative, so if your

system goes outside the normal smith chart

all bets on stability are off

1. Power gain of amplifier:

Gy =

(ﬂ'_lﬁjsnlz(] “.HSI-‘.)

I-I.S,[ j1-s, 1)

Requirement of impedance matching:

1. Minimum power loss in the feed line.

2. Maximum power transfer

3. Improving the S/N ratio of the system for sensitive receiver components

Required Other considerations:
1. Complexity 2.
4. Implementation

Band width requirement

3. Adjustability

Output stability circle and input stability circle:

- '
[ FL ITinl=1 |
Unstable -

l A \

1Cout| |

Stable |

i |

Transducer power gain:

Transducer power gain is nothing but the gain of the amplifier when placed

between the source and load.

Relation between nodal quality factor (Qn) with loaded quality factor (Qu):

QL=Qn/2




UNIT - I - TRANSMISSION LINE THEORY

General Solution:
1+dl S Z = R+joL
—_—

= G+joC

i Y = Y R+joL)(G+jaC) =~ZY
st Lg
k I l V=Ae"+B e ™

I = Ce™+De™ ™




V = Vg cosh \JZY x+1g Z, sinh JZY x
\Y
I = Icosh\[ZY x + 'zf sinh\[ZY x
Vi
g ™ Vg[cosh\/ZY ’*Zf sinh\/ ZY ! }

Z
Ig = I [cosh\/ZY I + Z—: sinh\[ZY 1 ]

The input impedance of the transmission line is,

v
Ty ===

IS
Zo (Zy cosh\[ZY 1+Z, sinh\[ZY 1)

Zg +Ztanhyl
= <o Z,+ Zgtanhyl

Zg

W Zp-2
o+ (BR)e

= Z
Zs 0 eyl - (.Z_E_—_.Z_Q) e'Y'
4 o

Zy+Z,
e +Ke !
ZS = Z0 vl -yl
e —-Ke
Wavelength and velocity of propagation:
The propagation constant (y) and characteristic impedance (Z,) are called

secondary constants of a transmission line.
Propagation constant is usually a complex quantity Y = O + J B

y=\/ZY

The characteristic impedance of the transmission line is also a complex quantity.

4
Z, = Y

a+if = y\/RG-w2LC +,jo(LG + RC)
o2 = B2+ RG-w2LC




2aBf = o (LG+RC)
. \/Bmc&mM

2

_________._—'———————'—_"—
\/ RG — 0?LC +4/ (RG — w?LC)? + w2 (LG + RCY?
Lo = 5

Velocity:
The velocity of propagation is given by,
v=Af
A
=2n f o
e s
\[LC
Wavelength:

The distance travelled by the wave along the line while the phase angle is

changing through 27 radians is called wavelength.
27 12
A= —B- or = ?
Waveform distortion:
The received waveform will not be identical with the input waveform at the
sending end. This variation is known as distortion.
1. Frequency distortion

2. Delay or phase distortion

Frequency Distortion: A complex (voice) voltage transmitted on a transmission
line will not be attenuated equally and the received waveform will not be identical

with the input waveform at the transmitting end. This variation is known as frequency
distortion.

Delay or Phase Distortion: For an applied voice-voltage wave the received
waveform may not be identical with the input waveform at the sending end, since

some frequency components will be delayed more than those of other frequencies.
This phenomenon is known as delay or phase distortion.

The Distortion Less Line:
If a line is to have neither frequency nor delay distortion, then attenuation factor
and the velocity of propagation v cannot be functions of frequency.



If v=%

B must be a direct function of frequency

8 = \/ ®2LC —RG +/(RG — 0?LC)? + 02 (LG + CR)?
- 2

For B to be a direct function of frequency, the term
(RG - @2 LC)? + 0? (LG + CR)? must be equal to (RG + »? LC)?

R_G

L C

This is the condition for distortionless line.

Loading:

H
» To achieve distortion less condition increase L/C ratio

* Increasing inductance by inserting inductances in series with the line is
termed as loading such lines are called as loaded lines

- _) - -
* Lumped inductors loading coils

(a) Lumped loading
(b) Continuous loading
(c) Patch loading

A
Unloaded

Lumped loaded

/’_f Continuously loaded

>

Attenuation
()

Frequency (f)
Comparison of loaded and unloaded cable characteristics
Inductance loading of Telephone cables:
Consider an uniformly loaded cable with G = 0. Then,
Z = R+joL
Y = joC

Z = \R2+(Lo)? tan—'(L—R“l)

Propagation constant y = \/ LY



tan_[ L
[0))

_ § RY [ 1
_ 1 R
-B.\[E sjoyic
- _R_|C
.. Attenuation constant o« = 5 T

Phase-shift p = o \ LC

: ® 1
Velocity of propagation v = E = \[——E-C—-
Campbell’'s Equation

/— Loading coils \

------ — AW —— T W T == ==

Z 1. %,
2 T2 '3
Z/' Z, vl
. 2 _2+Zotanh2
Z

C .
coshy'l = 27 sinh y/ + coshy!/
(]
Derive the expressions for open circuited and short circuited lines:

- Vg[cosh\]_l+ smh\f_l]
Zg .
I = Ix [cosh \ZY 1+ Z, sinh \[ZY I:I

The input impedance of a transmission line is given by

Vs

ZS=-I:



7 - [Zﬂmsh11+zusinhyf]

Z, cosh yI + Z sinh yl
Short circuited impedance The open circuited impedance
Z, = Z,tanhyl Z, = Z,cothyl

Reflection on a line not terminated in its characteristic impedance (Zo):

When the load impedance is not equal to the characteristic impedance of a transmission line,

reflection takes place, i.e., Z, # Z, , reflection occurs.

If a transmission line is not terminated in Z, , then part of the wave is reflected back. The
reflection is maximum when the line is open circuit or short circuit.
From the general solution of a transmission line, the equations for voltage and current are

expressed as:

_ExZa+2) [ (Za-2),
22, ety

1 IR (Zr +2y) [eys fZR ZO) ]

N7 7
Incident voltage component is given by

i
By (l +=0 J
EIZER(ZR +Zo)eys= ZR ) s
2Z, 2
Reflected voltage component is given by,

E [l ZO)

Rl 1-=2

E2=ER(ZR _ZO)e—ysz ZR -vs
27, 2

If Zz = which represents an open circuited line,
Ats=0, both E, and E, have an amplitude of E,/2. Thus at the receiving end, initial value of
the reflected wave is equal to incident voltage.

Open Circuit Open Circuit

Incident Wave \

P
23 .
‘
’ R _7 /’
J l - Wi e

Reflected

-+ [
N
O

(i) For time instant t = 0 (i) For time instant t = 1/8 f



Input impedance and transfer impedance:

Input impedance :

The equations for voltage and current at the sending end of a transmission line of
length ‘I’ are given by

zZ
Vg = VR(cosh\/ ZY | + -Z—: sinhw/ZY 1 )
-
Ig = I (cosh\/ ZY 1+-Z—;)lS sinh\[ZY / )

The input impedance of the transmission line is,

Z (Zg cosh \/ ZY !+Z,sinh \/ ZY )
Zg = (Z, cosh \/ ZY [+ Zg sinh \/ ZY 1)

Let \/ ZY =9

The input impedance of the line is

[ Zg coshyl+Z,sinhy/
Zs = Zo | Zycoshyl+ Zg sinhy1
FZR'*'Zotanh‘Yl
. Zs = 20| Zy+ Zg tanhyl
If K = k=20
- ZR+Z ’ then
B e’ +Ke V!
%s = Zo [e” -Ke ! ]

Transfer impedance :

Vg
Vg Zp+Z,
— = vl -yl

Zy = Zgcoshyl+Zgsinhyl



Parameters of open-wire and coaxial lines:
The inductance of an open wire line is given by,

B d]
107 | —+4In—
L=10 [M, -

The first term on the right hand side of the above expression represents internal inductance of
the line due to internal flux linkages in the conductors and is zero for a open wire line.

Hence the inductance of the open wire line is
d
L=4x 107In P henrys/m

d
=921 x 107 log,, . henrys/m

\a /

a — radius of conductor

d — distance between conductors.
The value of capacitance of a line is not affected by skin effect or frequency and hence the

capacitance of a open wire line with air dielectric is given by,

C= e ;’ farads/m

In—
a

where ¢, = Permittivity of free space = 8.85 x 102 f/m,

g, =1 forair
271
C= 4 ppf/m.

In—

Q



12.07
C=——ZHpf/m

log;o —
10

The resistance of a round conductor of radius ‘a’ meters to direct current is inversely
proportional to the area as,

R = k
«= 3
’ na - . - - k 5 -
While that of a round conductor with alternating current flowing in a skin of thickness 6 is,
® k
“ 2mnad o
Therefore the ratio of resistance to alternating current to resistance to direct current is given

by.

Roe _ a\/nfpuc _a

R, 2 28

For copper

%’—‘— =7.53 a\/_f_
de
PARAMETERS OF THE COAXIAL LINE AT HIGH FREQUENCIES

Because of the skin effect, the current flows on the outer surface of the inner conductor and
the inner surface of the outer conductor.

s Innet
Gonductor

Conductor
Sheath

Fora coaxial line the inductance is given by,
4 c
2C" In-

12
7 || AU sfemmy 5 g e 2(' 3
L=10 a (C*-p*y b

H/m

second term and third term represents flux linkages inside the inner and outer conductors,

The skin effect eliminates flux linkages and hence the inductance of coaxial line is given hy,
.
L=2x 107 In P henrys/m

b
L =46 x 107 log,, P henrys/m

The capacitance of the coaxial line is not affected by the frequency.



. 2me
C= 5~ farads/m

ln-

24. l4s
e R b ppf/m.

Iog,(,

Due to skin effect resistance increases and the resistance of coaxial copper line is
Due to skin effect resistance increases and the resistance of coaxial copper line is

1
R _=4.16 x 10° \/7[;+;]Q/m

The ac resistance of the coaxial cable is derived as follows,

R B [ 1.1 ]
™ 2madc 2mbdc 2mdc|la b
The ac resistance per unit length of a copper conductor is given by,
R = : I:']' + ']‘:I
21:[9'—0-63‘1}(5.7» 107) “’
Jf
R_=4.16 x 108 ﬁ[%ﬁ]ﬂm :
The dc resistance of a coaxial line is given by,
_‘_[L e }
R, = xo| a2 (c2 _bz) QQ/m

1. Line constants for zero dissipation line:
In general the line constants for a transmission line are:
‘ ’

Z=R+joL
Y= G+ij

R+ joL
Characteristic impedance Z; = G+ joC

Y= VZY = J(R+ joL)(G + joC)
y=a+/B.

For a transmission of energy at high frequencies, ®L > > R. We assume negligible losses or

Propagatlon constant

zero dissipation and G is also assumed to be zero. (G =0)



Using the inductance and capacitance a open wire line at high frequency, the value (f
characteristic impedance of the open wire line can be found as,

27.1

d B
R = \/Z =1201 = h
o=\ = n — ohms.
(or) R, =276 log,, d ohms.
The characteristic impedance of the coaxial line can be computed as,
L=4.60 x 107 log,, b/a h/m L=2 x 107 In b/a h/m
L s, 55.5¢,
~ logygb/a HuF/m L= Inb/a Hpf/m
L 138 L 60 b
Ry=+\TC \/; log,, b/a ohms R,=\T¢ =~8;|“; ohms

— The propagation contant g is given by,

Y= z¥ = J(~joL)(joC) = 2e?LC = joLC

= \J=jo*LC

The velocity of propagation can be calculated as

v ® ® 1 "

N -~ N
B oJ/ILC JIC

Measurement of VSWR and Wavelength:

* VSWR and the magnitude of voltage reflection coefficient are very important
parameters which determine the degree of impedance matching.

* VSWR and T are also used for measurement of load impedance by the

slotted line method.

Tunable probe VSWR

detector meter
A
Microwave N [——— Frequency . Variable ;Slotted line Unknown Matched
Source meter attenuator section impedance| | load
A
Microwave

power supply




e When a load Z; # Z, is connected to the transmission line, the standing
waves are produced.

e By inserting a slotted line system in the line, standing waves can be traced by

moving the carriage with a tunable probe detector along the line.
e VSWR can be measured by detecting Vyax and Viin in the VSWR meter.

. . \Y% 1+
Standing wave ratio (S) = —/* = s L)
Vmin 1-T
5 . Preﬂected
[’ = Reflection coefficient = ———— ... (2)

incident

Here, Prefeciea is a reflected power and Pincizens is @ incident power of unknown

impedance. S varies from I o «.As I” varies from 0 to co.
LOW VSWR (S < 20)

e Values of VSWR not exceeding 20 are very easily measured directly on the

VSWR meter using the experimental set-up shown in Fig.18.9 as follows,

(1) The variable attenuator is adjusted to 70dB. The microwave source is
set to the required frequency. The 1kHz modulation is adjusted for
maximum reading on the VSWR meter in a 30dB scale.

(2) The probe on the slotted waveguide is moved to get maximum reading
on the meter (corresponding to V).

(3)  The attenuation is now adjusted to get full-scale reading. This full-scale
reading is noted down. Next the probe on the slotted line is adjusted to
get minimum reading on the meter (corresponding to V

vmax

min)-

(4) The ratio of

gives the VSWR.
min
* The experiment is repeated for other frequencies as required to obtain a set of
values of S Vs f.

The Possible Sources of Error in this Measurements are:

(1) Viax and Vpin may not be measured in the square — law region of the
crystal detector.
(2) The probe thickness and depth of the penetration may produce

reflections in the line and also distortion in the field to be measured.
(3) When VSWR < 1.05, the associated VSWR of connector produces

significant error in VSWR measurement. Very good low VSWR (<1.01)
connectors should be used for very low VSWR measurements.



e For high power, double minimum method is used. The electromagnetic field
at any point of transmission line may be considered as the sum of two
traveling waves: the ‘Incident wave’ which propagates from generator and
‘reflected wave’ which propagates towards the generator.

e The reflected wave is set up by reflection of incident wave from a

discontinuity on the line or from the load impedance.
e The magnitude and phase of reflected wave depends upon amplitude and

phase of the reflecting impedance.
e The superposition of two traveling waves, gives rise to standing wave along

the line.
e The maximum field strength is found where two waves are in phase and it is

minimum where two waves adds in an opposite phase.
e The distance between two successive minimums (or maximums) is half the

guide wavelength on the line.
Reflection Coefficient:

The ratio of electrical field strength of reflected and incident wave is called
the reflection coefficient.
¢ Reflection coefficient, p is
- E, _ Z2-2,
E, 2+Z,
Z is the impedance at a point, and

where,

Z, is characteristic impedance.
* The above equation gives following equation IT|= =

A S+1
o A Twice minimum
S power points
>
V‘=m|me|»—— =2 e
|
I
| 3dB (m=\2)
I
IVminlfbp——1 N2 1 _Y__
| : |
I | |
I | I
| I |
| ! |
X1 Xmin X2 X

Distance (cms) — .

Double minima method

VSWR:
e VSWR denoted by S is,



S = - _ ]E||+ Er[
Emin IEll_ Er|

where, E; — Incident voltage, and

E; — Reflected voltage.

* In this method, the probe is inserted to a depth where the minimum can be

real without difficulty.

The probe is then moved to a point where the power is twice the minimum.

Let this position be denoted by x;.

The probe is then moved to twice the power point on the other side of the
minimum (say X»).

P. o V2

min min

2P

2
min‘x \

DN | —
<
™

Guide Wavelength:
* By moving the probe between two successive minima, a distance equal to

A
—2—8- is found to determine the guide wavelength A, .

Quarter wave line and Half wave line:
The input impedance of a dissipationless transmission line is

Zp+jRytan Bx
Zs = Ro| R ¥/ Zy tan Px

Zo o
tanPx  J 0

Zs = Ry R;
+J Zg



For a quarter wave line x = A/4,

_2m A _z
Bx =54 =32
Zg
7. = R tan 7t/2 J Ry 3 J Ry
s ol R, " = Ro|jz,
tann/2 /R
Z R%
S ZR
T
A
iy
Half-Wave Line
The input impedance of a dissipationless transmission line is
7. = |: ZptjRotan Bx
5 Ro+jZytan Bx

For a half-wave line x = A/2

% m R ZptjRytanm
S T Ry+jZgtanm
Z

(=4



UNIT - 111 - IMPEDANCE MATCHING IN HIGH FREQUENCY LINES

Single stub matching:

Location and length of the stub using reflection coefficient:

The input impedance of the line is given by

B 4 Sl
0 I_Ke—zyl

: = jé
For lossless linea=0,y=J pandK=|K|e
where ¢ is the angle of reflection coefficient.

1+|K e/t e/ 2P

= Zo " |K |/ ®-28D

l—lKlej’e-jw’

The input admittance is given by

Y, =

l_lKleJ'(O-ZIN)
Go 171K | e/ ®- 28D

where the characteristic conductance is

Go"’

T

1 1 . siae
s ek -+ Z, is resistive]

1—|K|[cos (60— 2B +jsin(¢— 2B D]
Go TH[K | [cos (9— 2B 1)+ sin(¢— 2p1)]
1-|K|[cos(d— 2B —j|K|sin(¢— 2B D]

= G0 14K [[cos (9~ 2B 1) +/ K sin (9= 2B D]

Multiplying the numerator and denominator by
1+|K|[cos(¢—2p7)—j | K|sin(¢—-2f 1)

Y.’ "
Since Y, =G, +, S, then

Y,

G,

Equating the real parts
G.

—G—o=

G 1-|KPR-27|K|sin(¢-201)
01+|KPR+2|K|cos(d—-2B 1)

G, iS5 _1-|KP-2|K|sin(-2B1)
Go G, 1+|KP+2|K|cos(¢-2B1)

1-1Kp2

1+[KPE+2]K|cos (¢-2 1)



Equating the imaginary parts

S, _ ___-2|K|sin(¢-281)

G, 1+|KPR+2|K|cos(¢-2B/)
At the location of stub Z; = Z,, for matching.

Since there is no reflection, / =/,
~G, =G,
- =1
1-|K]?
1+|KR+2|K|cos($-2B1/,)
1-|KP = 1+|KP+2|K|cos($-2B1,)
2|K|cos(¢-2B1,) = -2|KP
COS(¢—2BI,) = _IKI
¢-2p1, = cos? (-|KJ)

But cos!(-|K|) = —n+cos!|K|
$-2Bl, = —n+cos! |K|

“ 1

2B, = ¢+mn—-cos!|K|
_¢+n—cos!|K|
l‘ = ZB
or I, = L[’Ht—cos-‘ll(l] 'y
f 4n

The normalized susceptance (imaginary part) equation is
| S -2|K|sin(¢-2B1)
Gy, 1+|KP+2|K|cos(¢-2B1))
But (¢—-2p/,) = —m+cos!|K| and
cos(¢-2B1,) = -|K|

S, -2|K|sin(-m+cos! |K|)
G,  1+|KR+2|K|(-IK]

B 2| K |sin(cos! |K])
T 1+ |KPE-2|KP
Letcos! |K|=0,then|K|=cos® and

sin(cos'|K|) = sin0
= \ll—coslﬁ = \]l—ll(l2
S; ZIKldl_lKP

o s 1-1KP
B 2|K|
%= O JTo1KP

The susceptance of the stub is G, cot p /,
2|K]|

Gycotpl, = G, \I—ITIK—P



1 _ 1K
wnpl, ~ J1-|KP
VI-IKP

81 = tart LL-LKE

2|K]|

1. A1-]Kp

f,'ﬁtﬂn" :1]{'

g2 x o I-TKE
' 2|K|

The location of the stub */,” and length of the stub */" can be determined, if the
reflection coefficient and frequency are known.

Determine the stub length and the distance of the stub from the load. Given that a

complex load ZL =50 - j100 ohms is to be matched to a 75 ohms transmission line using
a short circuited stub.
(a) Characteristic impedance ( Z; ) of the line = 75Q
Load impedance Z, =50 — ;100 Q

) . Z; 50-/100Q
Normalized load impedance = Z; = Z. 7150
0

Z; =0.667 - j1.33

Normalized load impedance Z,' is plotted at the intersection of constant R circle with R =
0.67 and with X'= 1.33. This is point A. The impedance circle is drawn.
(b) The normalized load admittance point B is determined by drawing a line from point A through
the center to the opposite side of the S circle. (i.e., Point B),
Y=03+,0.6 75.

(¢) Travel along the constant S circle in the clockwise direction from load to generator to reach a

point C on g = 1 circle (or) & = | circle. Draw a line from O to C and extend the line to '
0

on the outer rim.
(d) The distance between B'C" gives the distance of the stub from the load.

ie,s=0.18 1 -0.09 2 =0.09 1.

(e) Atthe point C, the normalized admittance value is 1 +1.6. This is the point at which the stub
is connected. Thus the stub should provide a susceptance of - jl.6,

(f) The determine the length of the shorted stub that has opposite reactive component to the input
admittance, the outside of the smith chart (g = 0 circle) is moved around until a point with
susceptance of — /1.6 is reached which is point E. The point E represents a susceptance of
-ji.6.



(g) The distance between D and E is the length of the sub length of the stub /,
=0.338 2 - 0.25 2
/=088 ;.
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A 50 Q loss less feeder line is to be matched for an antenna with ZL = (75-j20) Q at

100MHz using single shorted stub. Calculate the stub length and distance between the
antenna and the stub using smith chart.

Given: Z, = 50Q
Z, = (15-j20)Q
f = 100 MHz
_ ¢ 3%10°
g7 100% 107
=3m

” o
Normalized load impedance 7, = Zl; o 2 5020 = 1.5-j0.4

Normalized load impedance z, is plotted at P on the Smith chart and the

impedance circle with ‘O’ centre and OP as radius is drawn.
From the smith chart OS read as SWR = 1.7
The normalized load admittance is diametrically opposite to the normalized load
impedance at Q ie, y, =0.62+;0.17.
¥, is moved in clockwise direction to a point A on the impedance circle where it

intersects R = 1 circle i.e., at1+;0.525.

The distance between Q and A is the distance from the load to the location of the
stub.

d = 0.1455 % - 0.0415 A

0.104 A
0.104x3 = 0312m

The stub must have zero resistance and susceptance that has an exactly opposite
valueat C ie., yg,,=0-70.525.

The length of the stub is measured from the right side of the chart (X = 0) at B to
the point C.

I = (0423-025)A = 0.173 A
0.173x3 = 0.519 m
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A 75 Q lossless line transmission line is to be match with a 100-j80€2 load using single
stub. Calculate the stub length and its distance from the load corresponding to the
frequency of 30 MHz using Smith Chart:

Given: Z, = 75Q
= 100-80Q

f = 30 MHz

™
-
|

C
§=3
3x 10%
30 x 10°

Normalized load impedance z; = Z;

- AN=IBY _ qida -j1.067



The normalized load impedance z; is marked in Smith chart at P and the
impedance circle with (1 +;0) as centre ‘O" and ‘OP" as radius.
From chart SWR = OS = 2.5
The normalized load admittance is diametrically opposite to the normalized load
impedance at Q is y, = 0.46 +0.36. y, is moved in clockwise direction to a point A
on the impedance circle where it intersects R = 1 circle ie, at1 + 70.956.

The distance between Q and A is the distance from the load to the location of the
stub

d

0.1605 & —0.0655 2. = 0.095 A
0.095x 10 = 095 m

The stub must have zero resistance and susceptance that has an exactly opposite
valueat C ie., y,, =0-;0.095.

The length of the stub is measured from the right side of the chart (X=0)atBto
the point C.

I = (0379-025)A = 0.129
= 0.129%x10 = 1.29m

IMPEDANCE OR ADMITTANCE COORDINATES
ob‘.") «0.0982, 3 -9y

- L) an
m"' > o Oy

) )
/.... - X
o)
S5 = X
W ¥
% =N
. / ‘
/;‘ ',' I l\“ .‘
B ~ .
!’d” ‘l X bt t T Ry ".
- l-
g : ! -1 .
5 [ I # ; L A\
o =L
i i
43 5
13 311
et - g ) .
A=
&t
i e ‘
L]
0
o :
T .\".' A
S \X,
LA
’\'/ & ‘6
ot /9
/&
s
/ 0
<
“,o k't
: [ Ol oo
= = i o9} .“\-
..W o ::‘ we "N.
E Y
IS o
e RADALLY SCALED PARAMETERS
fioes 282 30:: o - Mot S b b b kR SEBE
.E'm-.-uuum-—o i - Tomspp bab. < ,- R R ARG e BB .Il
at 88, K .9 B IR, o SN - =i8== 2 b R¥ S 8°8 3 3
I M B M S T he e T e e e L
g e S Al B S S : : D
'i.' g(uv(. . . c &



UNIT - IV - WAVE GUIDES

Electric field and magnetic field expression between the parallel plates:

Consider an electromagnetic wave propagating between a pair of parallel perfectly
conducting planes of infinite extent in the y and z directions as shown in Fig

S

Maxwell’s equationg will be solved to determine the electromagnetic field
configurations in the rectangular region.
Maxwell’s equations for a non-conducting rectangular region are given as
VxH = joeE
VxE = -jouH

a, a, a.
é é é
vxii=| 2 2 £
i O0x Oy Oz
H‘ ¥ H:

oH, @oH oH en) _(EH, an,}

o 2PESy SNl s VOO ek ke R

- a,( dy @z )+a'( oz ox ) %\ ax T ay

=Jjwe [ExEx'.'EyE) ¥ E:E:]

Equating x, y and z components on both sides,

0H, ¢H B
6yx —?:z = joeE,
0H, @H, _ &
i " dx T IE
o0H, ¢H

e S

ox &y JORE, J



a, a oa
Similarly, VxE=| 2 2 2
Ox dJdy o0z
E, E, E,
E,
Al B )l
0 0z ox ax ~ dy

=-jop[aH, +aH +a H,]
Equating x, y and z components on both sides,

0E, OE . )
dy “_521 =R,
JE, OE, _ }
oz “ox - oM
0E, OE, ‘
_5: . ay a —j(l)l,lH, /
The wave equation is given by
VE = y’E
VH = y’H
where y? = (o+jwe) (jop)

For a non-conducting medium, it becomes
VE = - o’pueE
VH = - o’ueH

2 2 2
a:-: ayg o

2 2 2
8H a;n 6H —_—

It is assumed that the propaganon is in the z direction and the variation of field
components in this z direction may be expressed in the form e,

where y is propagation constant.
Yy =a+jp

If o =0, wave propagates without attenuation.

If aisrealie, P =0, thereis no wave motion but only an exponential decrease
in amplitude.

- 10 .-

Let H,=H, ¢ i

oH,

oz 1 H) ™ = -yH,
oH,
Similarly, i H,




Let E = E% e ¥

Y y
O0E
— = _
0z 1E,
. OE,
Similarly e = E,

There is no variation in the y direction i.e., derivative of y is zero

tH, = joeE,
oH,
-YH,——éx— = joeE, ?
dH
Ex = josE,
‘YEy - -jprx 7
OE, .
= YEx ~ ox o ‘jﬁ)}lHy ?
0E
B = —JouH,
o’E <
22 * VE = —oueE
3°H 3
a2 TYH = —o’ueH |
d’E az
— =
where Py Y‘E and 2 =y?H
Tosolve H,,
oH,
-YH, - 5= = jocE,
YE, = -jouH,
From the above equations,
T £
x jou

.
: “joe [7H +a_]

Substituting the value of E, in the above equation,
oH
=L ( _4)]
H, jmp[ Jjwe vH, + ox

oH
TR e 21 oo
Hx mlue [YHJ+ ox ]

2 JH
Y - st il 2
H’[ ; T otue ] w’pe [ ox ]
3H
H,[oue+y’] = -y 5




oy R,
" olue+y? Ox
-y OH
ey R il
H: = 77 o
where h? = y*+o’pe

OB,
Tosolve H,, 1E, + 50 = jouH,

yH, = joeE,
From the above equations,

o loe
Y

0 %
E = Y []mpHy— ox ]
Substituting the value of E, in the above equation,

joe 11. oE,
5"y 'v[m”ﬂr'ax

H

H. = :Q;Lsn _-&f zg.ﬂ

y Y y Y ax
2 iog OE
olpe) _ _joe %K
Hy(l+ 2 ] 12 ox

. (y* + o’pe) Ox

h? = y* + o’ue

- —1'0)8 aE:
y h?  ox
Tosolve E_,
OE, .
YE, + 5 = jouH,
- lot
B, - Y E,
Substituting the value of H , in the above equation,
JdE '
el o JOE
YE, + &2 Jam[ Y E,]
) iu_s_ E
-y X
2 J0E
o’pe 2
+ = -
vE, ” B, o
A oE
. [ +m] . _E,
x| Y Y Ox



3E
E, [y’ +o’ue] .

i
o 5 P,
BV &
To solve E,,
OH,
£ s B ox — —JoteE,
-
. Jop
Substituting the value of H, in the above equation,
—'yzEy i oH, _
2
- . ] OH,
e b e S
g [ soe | - -
o pil sl . OH,
E,[y"toue] = jop pr: g
_ jop 9H,
E, = "0 ox
where W =y +o'pe

Electric field and magnetic field expressions for TE waves between parallel plates:

Transverse electric (TE) waves are waves in which the electric field strength E is
entirely transverse. It has a magnetic field strength H, in the direction of propagation
and no component of electric field E, in the same direction. (E. = 0).

Substituting the value of E, = 0 in the following equations.

JE, _jwe OE,

Then E, = 0and H,=0
The wave equation for the component E,
d’E

73?1 L E, = -mzp,sEy
O’E
-6_.\} = -w’peE, -y E,
2.2 R NS
But W =y’ +o'pe
O’E




This is a differential equation of simple harmonic motion. The solution of this
equation is given by

E, = C,sinhx + C,cos hx

where C, and C, are arbitrary constants.

IfE, is expressed in time and direction (E, = E) ¢*), then the solution becomes,
E, = (C,sin hx + C, cos hx) e™"*

The arbitrary constants C, and C, are determined from the boundary conditions.

The tangential component of E is zero at the surface of conductors for all values
of z.

E,=0atx=0
E,=0atx=a
Applying the first boundary condition (x = 0)
0=0+C,
C,=0
Then E, = C,sinhx e™
Applying the second boundary condition (x = a)

sinha = 0

where

I
—
-
N
-
w
-

m
Therefore, E, = C,sin (Mx) e

YEy = -jm"Hx
ox - —jO)P.H,
; -YE,

Substituting the value of E,, in the above equation
- . [ mn
H, = —L C, sin (71:) R

Jop
, L, 9By
From the second equation, H, = “jop  ox

Substituting the value of E | in the above equation
_ —mn
# jopa

H, = &% C, cos(mx)e""
' opa a

H C, cos(mx) ey

a



The field strengths for TE waves between parallel planes are
mn ) g

X

K, - C,sin( a
L, SRR . . }
H, Jou C, sm( . x)e "

—mn mrn ) _..
H, = Jopa C,cos( p x)e B
= JB

Then the field strengths for TE waves are
mmn :
) P L

X

E, = C sin( 2
H, = =B
JOR

_ Imm (m )n
H, ona C, cos 2% |8

The field distributions for TE,, mode between parallel planes are shown in Fig,

X X X
n - -—n—‘
t T2 [ 2 t
%, 0, 6, NN ;Z\\‘ e T

X

. (mn
C,sm( 2 )e‘f”‘




Electric field and magnetic field expressions for TE waves between rectangular

waveguides:

' The wave equation in a rectangular waveguide is given by

o’H, o°H,
3 Tl

The solution of the equation is

+

The expression relates a function of x alone to a function of y alone and this can be

- o’ue H,

o
H, (x,y)e ™

= XY

- 0? pe XY

(=

dy’

= C, cos Bx + C, sin Bx

-Az

0

H, (x,),2)
Let H, (,7)
where X is the function of x only.
Y is the function of y only.
Substituting the value of H, in the wave equation,
X &Y 3
+ XY
Y2 X Y
dzx &Y . .2
4 +h* XY
Yz "Xy
where K% = y>+ o’pe.
Dividing by XY,
_l.. ‘.ﬁx_ " _I_ dz_Y & hl
X dd 'Y ay
1dX
X 4 +h
equated to a constant,
dx’ o
l d’X 5
xz +h*-A
Let B?
2
l d ;2( p?
The solution of this equation is
X
Similarl 1dy
Ys . ¥
& o
Y ar Th

The solution of this equation is Y

Cycos Ay+Cysin Ay



But H, = XY

= (C, cos Bx + C, sin Bx) (C, cos Ay + C,sin Ay)
= C, C;cos Ay cos Bx + C, C, cos Ay sin Bx

+C, Cycos Bxsin Ay + C, C, sin Ay sin Bx
It is known that

g == % _jou OH
*  Rh* ox T h oy
For TE waves E,=0.

g lon
X h! ay

- -L:’ZE[—C, C; A sin Ay cos Bx~C, C; A sin Ay sin Bx
+C,CsAcos Bxcos Ay + C, C, A cos Ay sin Bx]
Applying boundary conditions, E,=0 when y=0, y=b.
If y = 0, the general solution is
- _lop - -
For E, =0, C,=0.(C, is common)

Then the general solution is

E, = :%E [~ C, C; Asin Ay sin Bx - C, C; A sin Ay sin Bx]

If y=b, E,=0.
For E, =0, it is possible either B=0 or A = % If B = 0, the above solution is
lentically zero. So it is better to select A = p':‘ ;

The general solution is
E, =42 [C,C;AsinAycosBx +C,C; Asin AysinBx ]
Similarly for E ,

-y 0 jop 0
g -y % joy OH,
y  h* oy h* ox

op OH,
-~ [+ E,=0)
= %[—C, C; Bcos Aysin Bx+ C, C, B cos Ay cos Bx -
C, C, B sin Bxsin Ay + C, C, B sin Ay cos Bx]
Applying boundary conditions

B - 0; x=0 and x=a

Ifx=0,



g = 1—:;!- [C,CyBcos Ay+C,C,BsinAy]
¥

For E, =0, C,=0.

Then the general expression is

E: = L‘}’,’f—[- C, C; B cos Ay sin Bx - C, C, B sin Bx sin Ay]

If x=a, then Eo =0,

= BsinBacosAy+C,C,sinBasinAy]

° mn
For Ey =0, B=

-
B: = -%[C,C,BsiancosAy+C,C4BsiansinAy]
E. =1%‘—[C,C3AsinAycosBx+czc,AsinAysian]
Substituting the value C,=C,=0
E: =J_(;:2&C,C3AcosB.xsinAy

- J_hz};l_ C, C,Acos("m)x sm(Tu)

E, = -T4 ¢ ¢, BsinBrcos Ay

5 J—E-c;:z C,CGB sin(inai)x cos (nTu)y

Let C = C, C,
E: =J£h)§LCAsinAycosBx
E: i -1—(:% CBsinBxcos Ay
where A = % and B=%
Similarly for H: ;
-y OH ioe OE -y OH
s = _I : 10)8 = =.—X -3 .. =
H: T W ox * h? dy h? - [.E_. 0]
For propagation, y = B, [+ a=0]
o B2
W ox
i 0
Bt g = don %



o K

dx  jop -Ey
s oH, . &
Substituting the value of =" in the above H, equation
b 2l Boos
My =%, Ton E,
=

op Y
Substituting the value of E; in the above H° equation

B - ;ﬁ [—‘1;'—2}1— CBsmecosAy]

H ='J'ECBsmBJccosAy
H° = Vi CBsm(mu)x cos(%)y

x h?
Similarly for H_ ,
Ho _._._-laH, _jmg BE,
y  h* oy W ox
- =y o
“ W
For propagation, y=jf.
0" ‘_‘.Lzﬁ oH,
y h y
—jop OH,
But Ex hZ ay
OH, _p2
ay i jmu x

o, | o .
Substituting this value of 3};‘ in the above H, equation

h Jou am

Substituting the value of E, in the above H ; equation
H = -ﬁ— [1—‘,"3}‘- C A sin Ay cos Bx]

lly

=

H: -mCAcosBxsmAy
H; m‘CAcos( n)x sm(ibl)y

[ E,=0]

[+ a=0]



H, = XY
= C, C,cos Ay cos Bx + C, C, cos Ay sin Bx
+C, C, cos Bx sin Ay + C, C; sin Ay sin Bx
But C, = C,=0
H, - C|C1m8AyOOSBx
C=C_CG
o
, = CcosAycosBx
(=]
:

oo (g e )

The ficld equations for TE waves are as follows :

H: = fg CB sin Bx cos Ay

H: -J"g' CA cos BxsinAy
H, = CcosAy cos Bx
E. -%CAmsBxsinAy

Ey = L3 CBisin Brcos Ay

t
mn

22 .
where A‘bandBﬁa



KONGUNADU COLLEGE OF ENGINEERING AND TECHNOLOGY

" DEPARTMENT OF ELECTRONICS AND COMMUNIATION ENGINEERING
EC 8561 - TRANSMISSION LINES AND RF SYSTEMS
UNIT -V - RF SYSTEM DESIGN CONCEPTS
COURSE HANDOUTS
Amplifier Power Relation:

Generic single stage amplifier configuration with input and output matching
networks is shown in fig.

input Qutput

'
Matching i "
Network : Load
(OMN) :
—o—

(IMN)

RF i " Matching
source ' Network
=g

}
Cin DC bias ¥ sid
Iy
b
Vs : :
~ta| o
Cou

(a) Simplified schematics of a single-stage amplifier

b by 1 a1 321

(b) Signal flow graph




RF source:

Incident Wave power:
The incident wave power at node ..

Where, Source node . __

Input power:

P =p ( 2 P:l Ib-\'r (]_r 2)

mn = % inc l— rm ) ® 2 I] _1'“”,1“"'2 o

Transducer power gain

Unilateral power gain(  ): G. = (l —II‘, |: jS;.l"(l 'lrslz)

Kl K Surs Xl - szzrl. )" Snsnrl. rssl2
2 2
ry= UL Bl o)
|l—[‘,_Sn|'|I—S,,I‘S|

Additional power relations
Available Power Gain (...

G. =« |Szl|2(].‘|r5|2)
AT 2 2
(l"lrom| ]I’Snrsl
Power Gain (Operating Power Gain):

The operating power gain is defined as “the ratio of the power delivered to the load to
the power supplied to the amplifier”.

Stability considerations and Stabilization Methods:

« An amplifier circuit must be stable over the entire frequency range
» The RF circuits (amplifier) tend to oscillate depending on operating
frequency and termination

(i) If | | > 1, then the magnitude of the return voltage wave increases called positive feedback, which causes instability (oscillator)
(i) If| | <1, the return voltage wave is totally avoided (amplifier). Its called as negative feedback



Two port network amplifier is characterized by its S-parameters
The amplifier is stable, when the magnitudes of reflection coefficients are
less than unity
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Stabilization Methods:

If the operation of a FET or BJT is unstable, we take steps to make them stable

The instability conditions | | > 1 and | | > 1 can be written in terms of the input and output impedances.

To stabilize the active devices, a series resistance or a conductance will be
added to the port.



Configuration at input port:

In the input port, the addition of ( ) must compensate the negative contribution of ( )

'
Zin * Rip
’
Rlﬂ
T
Active Device
Poce |” (BJT or FET)
— | -----

zln

Stabilization of input port through series resistance

Re(Z;, + Ry, +Zg) >0

Stabilization of input port through addition of shunt conductance.

Yin *+ Gin
——l— @@ pecea-
Sa’ Active device
- G
Souce - (BJT or FET)
+ ------

Yin
Stabilization of input port through shunt conductance
Re(Y,, +G,, +Y5) >0

Configuration at output port: N
In the output port, the addition of ..ccrmccrine

Re(Z,, +R, +Z,) >0
Zout *R;ut

'
Rout

Active Device Load
(BJT or FET)

Zout
Stabilization of output port through series resistance



------- Active P
device .
(BJT or Sout —— o
FET)
....... - — Ot

Y out
Stabilization of output port through shunt conductance

Re(Y,, +G., +Y.) >0



