UNIT -I RANDOM VARIABLES

PART-A

Problem1. X and Y are independent random variables with variance 2 and 3. Find the variance of $3 X+4 Y$.

Solution:

$$
\begin{aligned}
V(3 X+4 Y) & =9 \operatorname{Var}(X)+16 \operatorname{Var}(Y)+24 \operatorname{Cov}(X Y) \\
& =9 \times 2+16 \times 3+0 \quad(\therefore X \& Y \text { are independent } \operatorname{cov}(X Y)=0) \\
& =18+48=66 .
\end{aligned}
$$

Problem 2. A Continuous random variable X has a probability density function $\quad F(x)=3 x^{2}$;
$0 \leq x \leq 1$. Find ' a ' such that $P(x \leq a)=P(x>a)$

Solution:

We know that the total probability $=1$

$$
\begin{gathered}
\text { Given } P(X \leq a)=P(X>a)=K(\text { say }) \\
\text { Then } K+K=1 \\
K=\frac{1}{2} \\
\text { ie } P(X \leq a)={ }^{1} \frac{\&}{2} P(X>a)=\frac{1}{2}
\end{gathered}
$$

$$
\text { Consider } P(X \leq a)=\frac{1}{2}
$$

$$
\text { i.e. } \int_{0}^{a} f(x) d x={ }_{2} \frac{1}{2}
$$

$$
\begin{aligned}
& \int_{0}^{a} 3 x^{2} d x=\frac{1}{2} \\
& 3\left(\frac{x^{3}}{3}\right)_{0}^{a}=\frac{1}{2}
\end{aligned}
$$

$$
a^{3}=\frac{1}{-}
$$

Problem 3. A random variabl $\quad X$ has the p.d.f $\quad f(x)$ givenby $f(x)=\left\{\begin{array}{l}\left(C x e^{-x} \text {; if } x>0\right. \\ 0 \quad \text {; if } x \leq 0\end{array}\right.$
Find the value of C and cumulative density function of X.

Solution:

$$
\begin{aligned}
& \text { Since } \int_{-\infty}^{\infty} f(x) d x=1 \\
& \int_{0}^{\infty} C x e^{-x} d x=1 \\
& C\left[x\left(-e^{-x}\right)\left(e^{-x}\right)\right]^{\infty} \neq 1 \\
& \therefore f x(\Rightarrow)\left\{\begin{array}{l}
C=1 \\
l_{x e^{-x}} ; x>0 \\
0
\end{array} \quad ; x \leq 0.0\right.
\end{aligned}
$$

$$
\begin{aligned}
\text { C.D.F } F(x) & =\int_{0}^{x} f(x) d t=\int_{0}^{x} t e \quad d t=\left\lfloor-t e^{-t}-e^{-\rceil}\right]_{0}=-x e^{-x}-e^{-x}+1 \\
& =1-(1+x) e^{-x} .
\end{aligned}
$$

Problem 4. If a random variable X has the p.d.f $f(x)=\left\{\begin{array}{c}\frac{1}{2}(x+1) ;-1<x<1 \\ 0 \\ \text {;otherwise }\end{array}\right.$.
Find the mean and variance of X.

Solution:

$$
\begin{aligned}
& \text { Mean }=\int_{-1}^{1} x f(x) d x=\frac{1}{2} \int_{-1}^{1} x(x+1) d x=\frac{1}{2} \int_{-1}^{1}\left(x^{2}+x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \mu^{\prime}=\int_{-1}^{1} x^{2} f(x) d x=\int_{-1}^{1}\left(x^{3}+x^{2}\right) d x=\frac{1}{2}\left[\frac{x^{4}}{4}+\frac{x^{3} \|^{1}}{3}\right]_{-1}^{1} \\
& =\frac{1}{2}\left[44^{+} x^{-1}+\frac{1}{4} \frac{1}{3}\right] \\
& =\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3} \\
& \text { Variance }=\mu^{\prime} \mu^{\prime}()^{\prime} \\
& =\frac{1}{3}-\frac{1}{9}=\frac{3-1}{9}=\frac{2}{9} .
\end{aligned}
$$

Problem 5. A random variable X has density function given by $f(x)=\left\{\begin{array}{ll}\left(2 e^{-2 x} ; x \geqslant 0\right. \\ 0 & ; x<0\end{array}\right.$.
Find m.g.f

Solution:

$$
M_{X}(t)=E\left(e^{t x}\right)=\int^{\infty} e^{t x} f(x) d x=\int^{\infty} e_{t x} 2 e_{-2 x} d x
$$

$$
\begin{array}{ll}
0 & 0
\end{array}
$$

$$
=2 \int^{\infty} e^{(t-2) x} d x
$$

Problem 6. Criticise the following statement: "The mean of a Poisson distribution is 5 while the standard deviation is $4 "$.
Solution: For a Poisson distribution mean and variance are same. Hence this statement is not true.

Problem 7. Comment the following: "The mean of a binomial distribution is 3 and variance is 4 Solution:

In binomial distribution, mean $>$ variance but Variance
Variance $=4 \&$ Mean $=3$, the given statement is wrong.
Since Variance $=4 \&$ Mean $=3$, the given statement is wrong.
Problem8. If X and Y are independent binomial variates
find $P[X+Y=3]$

Solution:

$$
\begin{aligned}
& X+Y \text { is also a binomial variate with parameters } n+n=12 \& p=1 \\
& \therefore P[X+Y=3]
\end{aligned}
$$

Problem 9. If X is uniformly distributed with Mean1and Variance ${ }^{4}$, find $P[X>0]$

Solution:

If X is uniformly distributed over (a, b), then

$$
\begin{aligned}
E(X) & =\frac{b+a}{2} \text { and } V(X)=\frac{(b-a)^{2}}{12} \\
& \therefore \frac{b+a}{2}=1 \Rightarrow a+b=2 \\
& \Rightarrow \frac{(b-a)^{2}}{4} \\
& \Rightarrow a+b=2 \& b-a=4 \text { We get } b=3, a=-1
\end{aligned}
$$

$\therefore a=-1 \& b=3$ and probability density function of x is

$$
\begin{aligned}
f(x)= & \left\{\begin{array}{l}
\frac{1}{2} ;-1<x<3 \\
4 \\
\text { QOtherwise }
\end{array}\right. \\
& P[x<0]=\int_{-}^{0}-d x=\frac{[}{4}[x]_{-1}^{0}=\frac{1}{4}
\end{aligned}
$$

Problem 10. State the memoryless property of geometric distribution.

Solution:

If X has a geometric distribution, then for any two positive integer ' m 'and ' n ' $P[X>m+n / X>m] P[X>n]$.

Problem 11. X is a normal variate with mean $=30$ and $S . D=5$
Find the following $P[26 \leq X \leq 40]$

Solution:

$$
\begin{aligned}
& X \quad N\left(30,5^{2}\right) \\
& \therefore \mu=30 \& \sigma=5
\end{aligned}
$$

Let $Z=\frac{X-\mu}{\sigma}$ be the standard normal variate

$$
\begin{aligned}
& \qquad \begin{array}{l}
=P[-0.8 \leq Z \leq 2]=P[-0.8 \leq Z \leq 0]+P[0 \leq Z \leq 2] \\
\\
=P[0 \leq Z 0.8]+[0 \leq z \leq 2] \\
\\
=0.2881+0.4772 \mp 0.7_{3} 653 .
\end{array} \\
& \text { Problem 12. If } X \text { is a } N(2,3) \text { Find } P \geq \text { where } Y+1=X .
\end{aligned}
$$

$$
\begin{aligned}
\text { Solution: }\left[Y \geq^{3}\right\rceil & \left.=P X-1 \geq{ }^{3}\right] \\
& =P[X \geq 2.5]=P[Z \geq 0.17] \\
& =0.5-P[0 \leq Z \leq 0.17] \\
& =0.5-0.0675=0.4325
\end{aligned}
$$

Problem 13. If the probability is $\frac{1}{4}$ that a man will hit a target what is the chance that he will hit the target for the first time in the $7^{\text {th }}$ trial?

Solution:

The required probability is

$$
\begin{aligned}
P[F F F F F F S]= & P(F) P(F) P((F) P(F) P(F) P(F) P(S \\
& =\left(r^{6} p=+-4\right) P=0.0445 .
\end{aligned}
$$

Hence $p=$ Probability of hitting target and $q=1-p$.
Problem 14. A random variable X has an exponential distribution defined by p.d.f. $f(x)=e^{-x}, 0<x<\infty$. Find the density function of $Y=3 X+5$.

Solution:

$$
\begin{gathered}
y=3 x+5 \Rightarrow \frac{d y}{d x}=3 \Rightarrow \frac{d x}{d y}=\frac{1}{3} \\
\text { P.d.f of } y h(y)=f_{X}(x)\left|\frac{d x}{d y}\right| \\
h_{Y}(y)=\frac{1}{3} e^{-x} .
\end{gathered}
$$

Using $x=\frac{y-5}{3}$ we get $h_{Y}(y)=\frac{1}{3} e^{-\left(\frac{y-5}{3}\right)}, y>5(x>0 \Rightarrow y>5)$
Problem 15. If X is a normal variable with zero mean and variance σ^{2}, Find the p.d.f of $y=e^{-x}$

Solution:

$$
\begin{aligned}
& \text { Given } Y=e^{-x} \\
& \qquad f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1 x^{2}}{2 \sigma^{2}}} \\
& h_{Y}(y)=f_{X}(x)\left|\frac{d x}{d y}\right|=\frac{1}{\sigma \sqrt{2}} e^{-\frac{1}{2 \sigma}(\log y)^{2}} \quad \times^{1} \\
& \text { PART-B }
\end{aligned}
$$

Problem 16. A random variable X has the following probability function:
Values of X,

X	$:$	0	1	2	3	4	5	6	7
$P(X)$	$:$	0	K	$2 K$	$2 K$	$3 K$	K^{2}	$2 K^{2}$	$7 K^{2}+K$

Find (i) K, (ii) Evaluate $P(X<6), P(X \geq 6)$ and $P(0<X<5)$
(iii). Determine the distribution function of X.
(iv). $P(1.5<X<4.5 X>2)$
(v). $E(3 x-4), \operatorname{Var}(3 x-4)$

Solution(i):

$$
\begin{gathered}
\text { Since } \sum_{x=0}^{7} P(X)=1 \\
K+2 K+2 K+3 K+K^{2}+2 K^{2}+7 K^{2}+K= \\
110 \mathrm{~K}^{2}+9 \mathrm{~K}-1=0 \\
K=\frac{1}{10} \text { or } K=-1 \\
\text { As } P(X) \text { cannot be negative } K=\frac{1}{10}
\end{gathered}
$$

Solution(ii):

$$
\begin{aligned}
& P(X<6)=P(X=0)+P(X=1)+\ldots+P(X=5) \\
& =\frac{1}{10}+\frac{2}{10}+\frac{2}{10}+\frac{3}{10}+\frac{1}{100}+\ldots=\frac{81}{100} \\
& \text { Now } P(X \geq 6)=1-P(X<6) \\
& =1-\frac{81}{100}=\frac{19}{100} \\
& \begin{aligned}
\text { Now } P(0<X<5) & =P(X=1)+P(X=2)+P(X=3)=P(X=4) \\
& =K+2 K+2 K+3 K \\
& =8 K=\frac{8}{10}=\frac{4}{5}
\end{aligned}
\end{aligned}
$$

Solution(iii):

The distribution of X is given by $F_{X}(x)$ defined by

$$
F_{X}(x)=P(X \leq x)
$$

$\begin{array}{llllllllll}X & : & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
$F_{X}(x): 0 \quad \frac{1}{10} \quad \frac{3}{10} \quad \frac{5}{10} \quad \frac{4}{5} \quad \frac{81}{100} \quad \frac{83}{100} \quad 1$
Problem 17. (a) If $P(x)=\left\{\begin{array}{l}x ; x=1,2,3,4,5 \\ \frac{x}{15} ; \text { elsewhere }\end{array}\right.$
Find (i) $P\{X=1 \operatorname{or} 2\}$ and (ii) $P\{1 / 2<X<5 / 2 x />1\}$
(b) X is a continuous random variable with pdf given by

$$
F(X)= \begin{cases}K x & \text { in } 0 \leq x \leq 2 \\ 2 K & \text { in } 2 \leq x \leq 4 \\ 6 K-K x & \text { in } 4 \leq x \leq 6 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the value of K and also the $\operatorname{cdf} F_{X}(x)$.

Solution:

(a) i) $P(X=1$ or 2$)=P(X=1)+P(X=2)$

2

$$
\begin{aligned}
& =\frac{P\{(X=1 \operatorname{lor} 2) \cap(X>}{1)\}}
\end{aligned}
$$

$$
P(X>1)
$$

$$
\begin{aligned}
& =\frac{P(X=2)}{1-P(X=1)} \\
& =\frac{2 / 15}{1-(1 / 15)}=\frac{2 / 15}{14 / 15}=\frac{2=1}{14} .
\end{aligned}
$$

Since $\int_{\infty}^{\infty} F(x) d x=1$

$K[2 /+8 /-4+36-18-24+8]=1$

$$
8 K=1 \quad K=\frac{1}{8}
$$

We know that $F_{X}(x)=\int_{-\infty} f(x) d x$

$$
\begin{aligned}
& \text { If } x<0 \text {, then } F_{X}(x)=\int_{-\infty}^{x} f(x) d x= \\
& \begin{array}{l}
\text { If } x \in(0,2), \quad F_{X}(x)=\int_{-\infty} x f(x) d x \\
\text { then }
\end{array} \\
& F_{X}(x)=\int_{-\infty}^{0} f(x) d x+\int_{0}^{x} f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { If } x \in(2,4), \quad F_{X}(x)=\int_{-\infty}^{x} f(x) d x \\
\text { then }
\end{array} \\
& F_{X}(x)=\int_{-\infty}^{0} f(x) d x+\int_{0}^{2} f(x) d x+\int_{0}^{x} f\left(x_{2}^{x}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}+\frac{x}{4}-\frac{1}{2} \\
& =\frac{x}{4}-\frac{4}{16}=\frac{x-1,2}{4} 2 \leq x<4 \\
& \text { If } x \in(4,6) \text {, then } F_{X}(x)=\int_{-\infty}^{0} 0 d x+\iint_{0}^{2} K x d x+\int 2 K d x+\int k(6-x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}+1-\frac{1}{2}+\frac{6 x}{8}-\frac{x^{2}}{16}-3+1 \\
& =\frac{4+16-8+12 x-x^{2}-48+16}{16} \\
& =\frac{-x^{2}+12 x-20}{16}, 4 \leq x \leq 6 \\
& \text { If } x>6 \text {, then } F_{X}(x)=\int_{-\infty}^{0} 0 d x+\int_{0}^{2} K x d x+\int_{2}^{4} K d x+\int_{2} k(6-x) d x+\int_{4}^{6} 0 d x \\
& =1, x \geq 6 \\
& \therefore \begin{array}{ll}
\therefore F_{X}
\end{array} \quad(x)= \begin{cases}0 & ; x \leq 0 \\
\frac{x^{2}}{16} & ; 0 \leq x \leq 2 \\
\frac{1}{4}(x-1) & ; 2 \leq x \leq 4 \\
\frac{-1}{16}\left(20-12 x+x^{2}\right) ; 4 \leq x \leq 6 \\
1 & ; x \geq 6\end{cases}
\end{aligned}
$$

Problem18. (a). A random variable X has density function
$f(x)=\left\{\begin{array}{l}\frac{K}{1+x^{2}},-\infty<x<\infty \quad \text {. Determine } K \text { and the distribution functions. Evaluate the } 0\end{array}\right.$ probability $P(x \geq 0)$.
(b). A random varriable X h has the P.d.f $\quad f(x)=\left\{\begin{array}{l}2 x, 0<x<1 \\ 0,0 \text { Otherwise }\end{array}\right.$

Solution (a):

$$
\begin{aligned}
& \text { Since } \int_{-\infty}^{\infty} F(x) d x=1 \\
& \begin{array}{c}
\int_{-\infty}^{\infty} \frac{K}{1+x^{2}} d x=1 \\
\infty d x
\end{array} \\
& K \int_{\infty}^{\infty} \frac{d x}{1+x^{2}}=1
\end{aligned}
$$

$$
\begin{aligned}
& F_{X}(x)=\int_{-\infty}^{x} f(x) d x=\int_{1+-\infty}^{x} \frac{K}{x^{2} d t} \\
& =
\end{aligned}
$$

> Solution (b):
> (i) $P \| x<\frac{1}{2}\left|\nmid=\int_{0}^{1 / 2} f(x) d x=\int_{0}^{1 / 2} 2 x d x=2\right| 2\left(x^{2}\right)_{0}^{2}=\frac{2 \times 1}{8}=\frac{1}{4}$
> (ii) $\left.P\binom{1}{4}_{z} \neq \int_{1 / 4}^{1 / 2} f(x) d x=\int_{1 / 2}^{1 / 2} 2 x d x=2 \right\rvert\,\left\{\left(\left.\left.x^{2}\right|^{2}\right|^{2}\right)_{1}^{2}\right.$ $=2\binom{1}{-\frac{1}{8}\left(\frac{32}{32}\right.}=\left(\begin{array}{cc}1 / 4 \\ -1 & -\frac{1}{16}\end{array}\right)=\begin{aligned} & \frac{3}{16}\end{aligned}$. find $K, P[0.5 \leq X \leq 1]$ and the mean of X.
(b). Find the moment generating function for the $f(x)$ distribution whose p.d.f is $=\lambda e^{-\lambda x}, x>0$ and hence find its mean and variance.

Solution:

$$
\begin{aligned}
& \text { Since } \int_{-\infty}^{\infty} f(x) d x=1 \\
& \int_{0}^{\infty} K e^{-3 x} d x=1 \\
& K\left[\frac{\left.e^{-3 x}\right]}{-}\right]^{\infty}=1 \\
& \frac{K}{3}=1 \\
& K=3 \\
& \left.P(0.5 \leq X \leq 1)=\int_{0.5}^{1} f(x) d x=3 \int_{0.5}^{1} e^{-3 x} d x=\not \beta^{e^{-3}-e^{-1.5}} \frac{-\not x}{[x-1.5}-e^{-3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence the mean of } X=E(X)=\frac{1}{3} \\
& M_{X}(t)=E\left(e^{t x}\right)=\int^{\infty} \int e^{x x} f(x) d x=\int \lambda e \underset{-\lambda x t x}{e} d x \\
& =\lambda \int_{0}^{\infty} e^{-x(\lambda-t)} d x
\end{aligned}
$$

Problem 20. (a). If the continuous random variable X has ray Leigh density $F(x)=\left\|\underline{x} e^{x_{x^{2}}}\right\|(x)$ find $E(x)_{n}$ and deduce the values of $E(X)$ and $\operatorname{Var}(X)$.

Find the moment generating function, mean \& variance of X.

Solution:

(a) Here $U(x)=\left\{\begin{array}{lll}1 & \text { if } & x>0 \\ 0 & \text { if } & x \leq 0\end{array}\right.$

$$
\begin{aligned}
E\left(x^{n}\right) & =\int_{0} x^{n} f(x) d x \\
& =\int_{0}^{\infty} x^{n} \underline{x} \alpha^{2} e^{\frac{-x^{2}}{2 a^{2}}} d x
\end{aligned}
$$

$$
\begin{array}{lc}
\text { Put } & \frac{x^{2}}{2 \alpha^{2}}=t, \\
x=0, t=0 \\
& \frac{x}{\alpha^{2}}\left(2 \alpha^{2} t\right)^{n / 2} e^{-t} d t \\
& \\
& \\
& {[x=\mathbf{\alpha}, t=\infty} \\
& \left.x=\sqrt{2 a} \cdot \sqrt{2}^{t}\right]
\end{array}
$$

$$
0
$$

$$
\begin{aligned}
& \text { Variance }=\mu^{\prime}-()_{1}^{2}=\frac{2}{\lambda^{2}} \lambda^{2} \quad \lambda^{2} .
\end{aligned}
$$

Putting $n=2$ in (1), we get

$$
\begin{aligned}
E\left(x^{2}\right)= & 2 \alpha^{2} \Gamma(2)=2 \alpha \quad[\Gamma(2)=1] \\
\therefore \operatorname{Var}(X) & \left.=E\left(X^{2}\right)-[E(X)]\right]^{2} \\
& =2 \alpha^{2}-\alpha^{2 \pi} \\
& \left.=\left(2-\frac{\pi}{2}\right)^{2} \alpha^{2}=(4-\pi)_{\alpha^{2}}^{2}\right)
\end{aligned}
$$

(b) $M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{0}^{\infty} e^{t x} 2^{1-x / 2} d x$

Problem 21. (a).The elementary probability law of a continues random variable is $f(x)=y_{0}^{y} e^{-b(x-a)}, a \leq x \leq \infty, b>0$ where a, b and $y \underset{0}{ }$ are constants. Find y the $\mathrm{r}^{\text {th }}$ moment about point $x=a$ and also find the mean and variance.
(b).The first four moments of a distribution about $x=4$ are $1,4,10$ and 45 respectively.

Show that the mean is 5 , variance is $3, \mu_{3}=0$ and $\mu_{4}=26$.

Solution:

Since the total probability is unity,

$$
\begin{aligned}
\int_{-\infty}^{\infty}(x) d x & =1 \\
y_{0} \int_{0}^{\infty} e^{-b(x-a)} d x & =1
\end{aligned}
$$

$\mu^{\prime}\left(\mathrm{r}^{\text {th }}\right.$ moment about the point $\left.x=a\right)=\int_{-\infty}^{\infty}(x-a)^{r} f(x) d x$

$$
\left.=b \int_{a}^{\infty} x-a\right)^{r} e^{-b(x-a)} d x
$$

Put $x-a=t, d x=d t$, when $x=a, t=0, x=\infty, t=\infty$

$$
\begin{aligned}
& =b \int_{0}^{\infty} r e^{-b t} d t \\
& =b \frac{\Gamma(r+1)}{b^{(r+1)}}=\frac{r!}{b^{r}}
\end{aligned}
$$

In particular $r=1$

$$
\begin{gathered}
\mu_{1}^{\prime}=\frac{1}{\bar{b}} \\
\mu_{2}^{\prime}=\frac{2}{b^{2}}
\end{gathered}
$$

Mean $=a+\mu_{1}^{\prime}=a+{ }^{1} \bar{b}$
Variance $\left.=\mu_{2}^{\prime \prime} \mu^{\prime}\right)^{2}$

$$
=\frac{2}{b^{2}}-\frac{1}{b^{2}}=\frac{1}{\dot{b^{2}}}
$$

b) Given $\mu^{\prime}=1, \mu^{\prime}=4, \mu_{2}^{\prime}=10, \mu_{3}^{\prime}=454$
$\mu_{r}^{\prime}=r^{\text {th }}$ moment about to value $x=4$

$$
\text { Here } A=4
$$

Here Mean $=A+\mu^{\prime} \overline{\mathrm{T}} 4+1=5$
Variance $=\mu_{2}^{\prime} \mu()_{1}^{2}$

$$
\begin{aligned}
\mu_{1} & =4-1 \bar{\mu}^{-}-3 \mu \mu_{2}^{3}+2\left(\mu^{\prime}\right) \\
& =10-3(4)(1)+2(1)^{3}=0 \\
\mu_{4} & \left.=\mu_{4}^{\prime}-4 \mu^{\prime} \mu_{3}^{\prime}+6 \mu^{\prime} \mu_{2}^{\prime}(3)^{2}\right)^{\prime} \quad()^{+}
\end{aligned}
$$

$$
\begin{aligned}
& =45-4(10)(1)+6(4)(1)^{2}- \\
& 3(1)^{4}
\end{aligned}
$$

$$
\mu_{4}=26 .
$$

random variable X has the p.d.f
 of X .
(b). Find the moment generating function of the random variable X , with probability density function $f(x)= \begin{cases}2-x & \text { for } 10 \leq x<1 \\ 0 & \text { for } 1 \leq x<2 \text {. Also find } \mu^{\prime}, \mu^{\prime} . \\ 1{ }_{2} & \\ 0 & \text { otherwise }\end{cases}$

Solution:

$$
\begin{aligned}
& {\left[\left|x^{2}\right|\left(\frac{e^{-x}}{-1}\right)-2 x\left(\left.\left(\begin{array}{c}
e_{0} K \\
e^{-x} \\
1
\end{array}\right)^{\infty}+2 \right\rvert\,\left(\frac{e^{-x}}{-1}\right)_{d}^{-x} d x=\right.\right.} \\
& 2 K=1 \\
& K=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\dot{\mu}^{\prime} & =\int_{0}^{\infty} x^{r} f(x) d x \\
& =\frac{1}{2} \int^{\infty} x_{r+2}^{\infty} e d x \\
& =\frac{1}{2} \int_{0}^{\infty} e^{-x(x+3)-1} d x=\frac{(r+2)!}{2}
\end{aligned}
$$

$$
\text { Putting } n=1, \mu_{1}^{\prime \prime}=\frac{3!}{\frac{1}{2}}=3
$$

$$
n=2, \mu_{2}^{\prime}=\frac{2}{2}=12
$$

\therefore Mean $=\mu^{\prime}{ }^{\prime} 3$

(b) $M_{X}(t)=\int_{-\infty}^{e x f}(x) d x$

$$
=\int_{0}^{1} e^{t x} x d x+\int_{1}^{2} e^{2 x}(2-x) d x
$$

$$
\begin{aligned}
& =\binom{x e^{t x}-\frac{e^{t x^{1}}}{t}}{t^{2}}_{0}^{+}\left[(2-x) \underset{ \pm}{e^{t x}-(-1)} \frac{\left.e^{t x}\right]^{2}}{t^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mu^{\prime}=\text { coeff. of } \frac{t}{1!}=1 \\
& \mu^{\prime}=\text { coeff. of } \frac{t^{2}}{2!}=\frac{7}{6} \text {. }
\end{aligned}
$$

Problem 23. (a).The p.d.f of the r.v. $X \quad$ follows the probability law: $f(x)=\frac{1}{2 \theta} e^{\frac{-\mu^{-\theta} \theta}{\theta}}$, $-\infty<x<\infty$. Find the m.g.f of X and also find $\quad E(X)$ and $V(X)$
(b). Find the moment generating function and $\mathrm{r}^{\text {th }}$ moments for the distribution. Whose p.d.f is $f(x)=K e^{-x}, 0 \leq x \leq \infty$. Find also standard deviation.

Solution:

$$
\begin{aligned}
& M \underset{x}{\infty}(t)=E\left(e^{2 x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{-\infty}^{1} e^{1} e^{-\mid \theta_{\theta}-\theta e^{x}} d x \\
& =\int \frac{1}{\theta} e^{\frac{(x-\theta)}{\theta}} e^{f x} d x+\int \frac{1}{\theta \theta} e^{\frac{-(x-\theta)}{\theta}} e^{t x} d x
\end{aligned}
$$

$$
\begin{aligned}
& E(X)=\mu_{1}^{\prime}=\text { coeff } . \text { of } \operatorname{tin} M_{A}(t)=\theta \\
& \mu_{\overline{2}}^{\prime} \text { coeff } . \text { of_in }{\underset{2}{2}}_{2}^{t^{2}}(t)=3 \theta \\
& \operatorname{Var}(X)=\mu^{\prime} \quad()_{1}^{2} \mu \quad 2 \quad{ }^{2}=3 \theta \\
& -\theta=X \theta
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { Total Probability=1 } \\
& \therefore \int k e^{-x} d x=1 \\
& k\left[e^{-x}\right]^{-x}=1 \\
& k=1 \\
& M_{X}(t)=E\left[e^{t x}\right] \neq \int_{0}^{\infty} e^{t x} e^{-x} d x=\int_{0}^{\infty} e^{(t-1) x} d x \\
& \left.=\left[e^{[t-1) x}\right]_{0}^{t-1}\right]^{+0}=\frac{1}{1-t}, t<1 \\
& =(1-t)^{-1}=1+t+t^{2}+\ldots+t^{r}+ \\
& \mu^{\prime}= \\
& \text {.. } \infty \\
& 1 \text { coeff. of } \overline{t^{2}}=r!
\end{aligned}
$$

When $r=1, \mu^{\prime}{ }_{\mathrm{T}} 1!=1$

$$
r=2, \mu_{2}^{\prime}=2!=2
$$

Variance $=\mu^{\prime}-\mu^{\prime}=2-1=1$
\therefore Standard deviation=1.
Problem 24. (a). Define Binomial distribution Obtain its m.g.f., mean and variance.
(b). (i).Six dice are thrown 729 times. How many times do you expect atleast 3 dice show 5 or 6 ?
(ii).Six coins are tossed 6400 times. Using the Poisson distribution, what is the approximate probability of getting six heads x times?

Solution:

a) A random variable X said to follow binomial distribution if it assumes only non negative values and its probability mass function is given by $P(X=x)=n C_{x} p^{x} q^{n-x}, x=0,1,2, \ldots, n$ and $q=1-$
p. M.G.F.of Binomial distribution:-
M.G.F of Binomial Distribution about origin is

$$
\begin{gathered}
M_{X}(t)=E\left[e^{t x}\right] \sum_{x=0}^{n} e^{t x} P(X=x) \\
\quad=\sum_{x=0}^{n} n C_{x} x P^{x} q^{n-x} e^{t x}
\end{gathered}
$$

UNIT - II TWO DIMENSIONAL RANDOM VARIABLES

Part.A

Problem 1. Let X and Y have joint density function $f(x, y)=2,0<x<y<1$. Find the marginal density function. Find the conditional density function Y given $X=x$.

Solution:

Marginal density function of X is given by

$$
\begin{aligned}
f_{X}(x)=f(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{x}^{1} x,(y d y)=2 d f_{x}^{1}=2 y()^{1}{ }_{x} \\
& =2(1-x), 0<x<1 .
\end{aligned}
$$

Marginal density function of Y is given by

$$
\begin{aligned}
f_{Y}(y)=f(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{y} 2 d x=2 y, 0<y<1
\end{aligned}
$$

Conditional distribution function of Y given $X=x$ is $f(y / x)=\frac{f(x, y)}{f(x)}=\frac{2}{2(1-x)}=\frac{1}{1-x}$.

Solution:

$F(x)$ is a distribution function only if $f(x)$ is a density
functig' $(x)=\frac{d}{d x}[F(x)]=\frac{1}{2 a}, \quad-a<x<$
$\int_{-\infty}^{\infty} f(x)=1$
$\therefore \int_{2}^{a} 1 \quad \frac{1}{a} d x=\frac{1}{2 a}[x]_{-a}^{a}={ }_{2} \frac{1}{a}[a-(-a)]$

$$
=\frac{1}{2 a} \cdot 2 a=1 .
$$

Therefore, it is a distribution function.

Problem 3. Prove that $\int_{x_{1}}^{x_{2}} f_{X}(x) d x=p\left(x_{1}<x<x_{2}\right)$

Solution:

$$
\begin{aligned}
\int_{x_{1}}^{\mathbf{x}_{2}} f(x) d x & =[F(x)]_{x}^{x_{2}} \\
& {\left[\begin{array}{l}
x \\
\\
\end{array}\right.} \\
& =F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right) \\
& =P\left[X \leq x_{2}\right]-P\left[X \leq x_{1}\right] \\
& =P\left[x_{1} \leq X \leq x_{2}\right]
\end{aligned}
$$

Problem 4. A continuous random variable $\quad X$ has a probability density function $f(x)=3 x^{2}$, $0 \leq x \leq 1$. Find ' a ' such that $P(X \leq a)=P(X>a)$.

Solution:

Since $P(X \leq a)=P(X>a)$, each must be equal to $\frac{1}{2}$ because the probability is always 1.

$$
\therefore P(X \leq a)=\frac{1}{2}
$$

$$
\Rightarrow \int_{0}^{a} f(x) d x=\frac{1}{2}
$$

$$
\int_{0}^{a} 3 x^{2} d x=\frac{1}{2} \Rightarrow 3\left|\frac{\left.\mid x^{3}\right\rceil^{a}}{\lfloor 3}\right|^{a}=a^{3}=\frac{1}{2}
$$

$\therefore \sum_{3}=\left(\frac{1}{2}_{\frac{0}{2}}\right.$
Problem5. $\left\{\begin{array}{l}\text { uppose that the joint density function }\end{array}\right.$

$$
f(x, y)=\left\{\begin{array}{ll}
1 & , \text { otherwise }
\end{array} \quad \text { Determine } A\right.
$$

Solution:

Since $f(x, y)$ is a joint density function

$$
\begin{aligned}
& \iint_{-\infty-\infty}^{\infty} f(x, y) d x d y= \\
\Rightarrow & \iint_{0}^{\infty} A e^{-x} e^{-y} d x d y=1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow A \int_{0}^{\infty} e^{-y} \left\lvert\,\left(\begin{array}{l}
\left(\begin{array}{l}
e^{-x} \\
-1 \\
-1
\end{array}\right)_{0}^{\infty} \\
0_{0}
\end{array} d y=1\right.\right. \\
& \Rightarrow \text { Af }\left[e^{-y}-e^{-2 y}\right] d y=1 \\
& \left.\Rightarrow A^{\left[\frac{e^{-y}}{-y}\right.} \frac{\left.e^{-2 y}\right]^{\infty}}{-2}\right|_{0}=1 \\
& \Rightarrow A \stackrel{[1]}{[\mid]}=1 \Rightarrow A=2
\end{aligned}
$$

Problem 6. Examine whether the variables
X and Y are independent, whose joint density function is $f(x, y)=x e^{-x(y+1)}, 0<x, y<\infty$.

Solution:

The marginal probability function of X is

$$
\begin{aligned}
f_{X}(x)=f(x) & =\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{\infty} x e^{-x(y+1)} d y \\
& =x e^{\left[e^{-x(y+1)}\right]} \mid=-\left[0-e^{-x}\right]=e^{-x},
\end{aligned}
$$

The marginal probability function of Y is

$$
\begin{aligned}
f_{Y}(y)=f(y) & =\int_{-\infty}^{\infty} f(x, y) d x=\int^{\infty} x e^{-x(y+1)} d x \\
& =x\left\{\begin{array}{l}
\left(e^{-x(y+1)}\right]^{0}-\left(e^{-x(y+1)}\right)| | \\
-(y+1)
\end{array}|y+1|_{0}\right. \\
& =\frac{1}{(y+1)^{2}}
\end{aligned}
$$

Here $f(x) \cdot f(y)=e^{-x} \times \frac{1}{(1+y)^{2}} \neq f(x, y)$
$\therefore X$ and Y are not independent.
Problem 7. If X has an exponential distribution with parameter 1. Find the pdf of $y=\sqrt{x}$

Solution:

Since $y=\sqrt{x}, x=y^{2}$
Since X has an exponential distribution with parameter 1, the pdf of X is given by

$$
\begin{aligned}
& \quad f_{X}(x)=e^{-x}, x>0 \quad\left[f(x)=\lambda e^{-\lambda x}, \lambda=1\right] \\
& \therefore f_{Y}(y)=f_{X}(x)\left|\frac{d x}{d y}\right| \\
& \\
& =
\end{aligned}
$$

$$
f_{Y}(y)=2 y e_{2}^{-y}, y>0
$$

Problem 8. If X is uniformly distributed random variable in $\left({ }_{-} \pi, \pi \mid\right.$, Fing the probability density function of $Y=\tan X$.

Solution:

Given $Y=\tan X \Rightarrow x=\tan ^{-1} y$
$\therefore \frac{d x}{d y}=\frac{1}{1+y^{2}}$

$f_{x}(x)=\frac{1}{b-a}=\frac{1}{\underline{\Pi}_{+} \Pi}$
$f_{X}(x)=\frac{2}{\pi},-\frac{2}{\pi}<x<\frac{\pi}{2}$
$\operatorname{Now} f \underset{Y}{(y)} \underset{X}{f(x)} \phi\left|\frac{x}{d y}\right|=\frac{1}{\pi}\left(\frac{1}{2}\left(\frac{1}{1+y^{2}}\right),-\infty<y<\infty\right.$

$$
\therefore f(y)=\frac{1}{\pi\left(1+y^{2}\right)},-\infty<y<\infty
$$

Problem 9. If the Joint probability density function of (x, y) is given by $\quad f(x, y)=24 y(1-$ $0 \leq y \leq x \leq 1$ Find $E(X Y)$.
$x)$,

Solution:

$$
\begin{aligned}
E(x y) & =\iint_{0 y}^{11} x y f(x, y) d x d y \\
& =24 \int_{0}^{11} \int_{0}^{1} y^{2}(1-x) d x d y \\
& \left.=\left.24 \int_{0}^{1} y^{2}\right|_{[1} ^{[6} \frac{y^{2}}{2}+\frac{y^{3}}{3}\right] d y={ }_{-0}{ }_{15}
\end{aligned}
$$

Problem 10. If X and Y are random Variables, Prove that $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$

Solution:

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E(X))(Y-E(Y))] \\
& =E(X Y-\bar{X} Y-\bar{Y} X+\bar{X} \bar{Y}) \\
& =E(X Y)-\bar{X} E(Y)-\bar{Y} E(X)+\bar{X} Y \\
& =E(X Y)-\bar{X} Y-\bar{X} Y+\bar{X} \bar{Y}
\end{aligned}
$$

$$
=E(X Y)-E(X) E(Y) \quad[E(X)=\bar{X}, E(Y)=\bar{Y}]
$$

Problem 11. If X and Y are independent random variables prove that $\operatorname{cov}(x, y)=0$
Proof:

$$
\operatorname{cov}(x, y)=E(x y)-E(x) E(y)
$$

But if X and Y are independent then $E(x y)=E(x) E(y)$
$\operatorname{cov}(x, y)=E(x) E(y)-E(x) E(y)$
$\operatorname{cov}(x, y)=0$.
Problem 12. Write any two properties of regression coefficients.

Solution:

1. Correction coefficients is the geometric mean of regression coefficients
2. If one of the regression coefficients is greater than unity then the other should be less than 1.

$$
\begin{aligned}
& b_{x y}=r \frac{\sigma}{y}_{\sigma_{x}}^{a n d} b_{y x}=r \frac{\sigma_{x}}{\sigma_{y}} \\
& \text { If } b_{x y}>1 \text { then } b_{y x}<1 .
\end{aligned}
$$

Problem 13. Write the angle between the regression lines.
Solution: The slopes of the regression lines are

$$
m_{1}=r_{-}{\underset{\sigma}{y}}_{\sigma_{x}}^{2} \quad 2=\frac{1 \sigma_{y}}{r \sigma}
$$

If θ is the angle between the lines, Then

$$
\tan \theta=\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\left\lfloor\frac{1-r^{2}}{r}\right\rfloor
$$

When $r=0$, that is when there is no correlation between x and $\mathrm{y}, \tan \theta=\infty(\mathrm{or}) \theta=\pi$
and so the regression lines are perpendicular
When $r=1$ or $r=-1$, that is when there is a perfect correlation $+v e$ or $-v e, \theta=0$ and so the lines coincide.

Problem 14. State central limit theorem

Solution:

If $X_{1}, X_{2} \ldots . X_{n}$ is a sequence of independent random variable $\quad E\left(X_{i}\right)=\mu_{i}$ and $\operatorname{Var}\left(X_{i}\right)={ }_{i}^{2}, i=1,2, \ldots . . n$ and if $S_{n}=X_{1}+X_{2}+\ldots \ldots+X_{n}$ then under several conditions $S \quad{ }_{n}$ σ follows a normal distribution with mean $\mu=\sum \mu_{i=1}^{i} \quad$ and variance $\sigma^{2}=\sum_{i=1} \sigma_{i}{ }_{i} \quad$ as $n \rightarrow \infty$.

Problem 15. i). Two random variables are said to be orthogonal if correlation is zero.
ii). If $X=Y$ then correlation coefficient between them is $\underline{1}$

Part-B

Problem 16. a). The joint probability density function of a bivariate random variable (X, Y) is $f_{X Y}(x, y)=\left\{\begin{array}{l}l(x+y), 0<x<2,0<y<2 \\ b \quad, \text { otherwise }\end{array}\right.$ where ' k ' is a constant.
i. Find k.
ii. Find the marginal density function of X and Y.
iii. Are X and Y independent?
iv. Find $f_{Y},(y / x)$ and $f_{X},(y$

Solution:
(i). Given the joint pr brbability density function of a brivate random variable (X, Y) is

$$
\begin{aligned}
& f_{X Y}(x, y)=\left\{\begin{array}{l}
\mid k(x+y), 0<x<2,0<y<2 \\
0, \text { otherwise }
\end{array}\right. \\
& \text { Here } \iint_{-\infty}^{\infty \infty} f_{X Y}^{\infty}(x, y) d x d y=1 \Rightarrow \iint_{-\infty} K(\underset{-\infty}{\infty} \underset{-\infty}{\infty+y}) d x d y=1 \\
& \int_{0}^{\infty} \int_{0}^{2} K(x+y) d x d y=\left.1 \Rightarrow K\right|_{2}{ }_{0}{ }^{2}\left[x^{2}-+\left.x y\right|^{-\infty} d y=1\right. \\
& \Rightarrow K \int_{0}^{2}(2+2 y) d y=1 \\
& \left.\Rightarrow K\left[2 y+y^{2}\right]\right]_{0}^{2}=1 \\
& \Rightarrow K[8-0]=1 \\
& \Rightarrow K=\frac{1}{8}
\end{aligned}
$$

(ii). The marginal p.d.f of X is given by

$$
\begin{aligned}
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y & =\frac{1}{8} \int_{0}^{2}(x+y) d y \\
& =\frac{1}{8}\left[x\left[x y+\frac{y_{2}^{2}}{2}\right]^{2}=-4+x\right.
\end{aligned}
$$

\therefore The marginal p.d.f of X is

$$
f_{X}(x)= \begin{cases}x+1 \\ \frac{x}{4}, & 0<x<2 \\ \frac{\text { f }}{}, & \text { otherwise }\end{cases}
$$

The marginal p.d.f of Y is

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\frac{1}{8} \int_{0}^{2}(x+y) d x
$$

$$
\begin{aligned}
& =\frac{1}{8}\left[x^{2}+2+y\right]^{2} \\
& =\frac{1}{8}[2+2 y]=\frac{y+1}{4}
\end{aligned}
$$

\therefore The marginal $\mathrm{p}(\mathrm{dy} f \mathrm{f} \mathrm{of} Y$ is

$$
f_{\mathrm{x}}(y)= \begin{cases}\frac{,}{4} & 0<y<2 \\ 6 & , \text { otherwise }\end{cases}
$$

(iii). To check whether $X \underset{x+1}{\text { and }})^{Y}(\underset{y}{\text { are }}$ independent or not.

$$
f_{X}(x) f_{Y}(y)=\frac{(x+1) \mid y}{+1} \quad \neq f_{X Y}(x, y)
$$

Hence X and Y are not independent.
(iv). Conditional p.d.f $f_{Y} /\left(y / x_{1}\right)$ is given by

$$
f_{Y}\left(y / /_{x}\right)=\frac{\frac{f(x, y)}{f_{X}(x)}=\frac{\frac{8}{4}(x+y)}{\frac{1}{4}(x+1)}=\frac{1(x+y)}{2(x+1)}, \frac{1}{2}}{(x)}
$$

(v) $P\left(\begin{array}{ll}0<y<2 & z / x=1\end{array}\right)=\int_{0} f_{Y}(x+x=1) t y$

$$
=\frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{1+y}{2} d y=\frac{5}{32} .
$$

Problem 1(71) (6-x X and Y are two random variables having joint probability density function
$f(x, y)=\left\{\begin{array}{ll}(6-x-y), & 0<x<2,2<y< \\ -4 & \text {, otherwise } \\ b\end{array} \quad\right.$ Find (i) $P(X<1 \cap Y<3)$
(ii) $P(X+Y<3)$ (iii) $P(X<1 / Y<3)$.
b). Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn find the joint probability distribution of (X, Y).

Solution:

a).
$P(X<1 \cap Y<3)=\int_{y=-\infty}^{y=3} \int_{x=-\infty}^{x=1} f(x, y) d x d y$

$$
\begin{aligned}
& =\int_{y=2}^{y=3 x=0}(1)(6-x-y) d x d y \\
& =\frac{1}{8} \iint_{2}^{3}(6-x-y) d x d y \\
& =\frac{1}{8} \int_{2}^{3}\left[6 x-\frac{x^{2}}{2}-x y\right]_{\square}^{1} d y \\
& P(X<1 \cap Y<3)=\frac{3}{8}
\end{aligned}
$$

(ii). $P(X+Y<3)=\iint_{02[}^{13-x}-\begin{aligned} & (6-x-y) \\ & d y d x\end{aligned}$

$$
\begin{aligned}
& =\frac{8}{1} \int_{0}^{8} 9 y-x y-\left.\frac{2^{2}}{\square}\right|^{-x} d x \\
& \left.=8 \int_{0}^{1} 63(-x){ }_{0}^{1} 6(-x) \frac{(3-x)^{2}}{2}-[12-2 x-2]\right] d x \\
& \left.=\frac{1}{8} \int_{0}^{0} 18-6 x-3 x+x^{2}-\frac{\left(9+x^{2}-6 x\right)}{2}-(10-2 x)\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8}{1} \int_{0}^{7}--4 x+2^{2^{2}-1} d x
\end{aligned}
$$

(iii). $P(X<1 / Y<3)=\frac{P(6<1 \cap y<3)}{P(y<3)}$

The Marginal density function of Y is $f_{Y}(y)=\int_{0}^{2} f(x, y) d x$

$$
=\int_{0}^{2}(76-x-y) d x
$$

$$
\begin{aligned}
& =\frac{1}{8}\left[6 x-\left.\frac{x_{2}}{2-y x \mid}\right|^{2}\right. \\
& =\frac{1}{8}[12-2-2 y] \\
& =\frac{5-y}{4}, 2<y<4 .
\end{aligned}
$$

$$
\begin{aligned}
P(X<1 / Y<3)= & \frac{\iint_{x=0}^{x=2}=2}{\frac{1}{8}(6-x-y) d x d y} \\
& =\frac{\int_{y=2}^{y=3} f_{Y}(y) d y}{\left.\int_{2}\left(\frac{3}{4}\right) \right\rvert\, d y}=\frac{-y}{4}\left[5 y-\frac{3}{8}\left[y^{2}\right]^{3}\right. \\
& =\frac{3}{8} \times \frac{8}{5}=\frac{3}{5}
\end{aligned}
$$

b). Let X takes 0, 1, 2 and Y takes $0,1,2$ and 3 .
$P(X=0, Y=0)=P($ drawing 3 balls none of which is white or red $)$
$=P($ all the 3 balls drawn are black $)$

$$
=\frac{4 C_{3}}{9 C_{3}}=\frac{4 \times 3 \times 2 \times 1}{9 \times 8 \times 7}={ }_{21}^{1}
$$

$P(X=0, Y=1)=P($ drawing 1 red ball and 2 black balls $)$

$$
=\frac{3 \mathrm{C}_{1} \times 4 C_{2}}{9 C_{3}}=\frac{3}{14}
$$

$P(X=0, Y=2)=P($ drawing 2 red balls and 1 black ball $)$

$$
=\frac{3 C_{2} \times 4 C_{1}}{9 C_{3}}=\frac{3 \times 2 \times 4 \times 3}{9 \times 8 \times 7}={ }^{1}
$$

$P(X=0, Y=3)=P($ all the three balls drawn are red and no white ball $)$

$$
=\frac{3 C_{3}}{9 C_{3}}=\frac{1}{84}
$$

$P(X=1, Y=0)=P($ drawing 1 White and no red ball $)$

$$
=\frac{2 C_{1} \times 4 C_{2}}{9 C_{3}}=\frac{\frac{2 \times 4 \times 3}{1 \times 2}}{\frac{9 \times 8 \times 7}{1 \times 2 \times 3}}
$$

$$
=\frac{12 \times 1 \times 2 \times 3}{9 \times 8 \times 7}=1
$$

$P(X=1, Y=1)=P($ drawing 1 White and 1 red ball $)$

$$
=\frac{2 C_{1} \times 3 C_{1}}{9 C_{3}}=\frac{\frac{2 \times 3}{9 \times 8 \times 7}}{1 \times 2 \times 3}=2
$$

$P(X=1, Y=2)=P($ drawing 1 White and 2 red ball $)$

$$
=\frac{2 C_{1} \times 3 C_{2}}{9 C_{3}}=\frac{2 \times 3 \times 2}{\frac{9 \times 8 \times 7}{1 \times 2 \times 3}}=1
$$

$P(X=1, Y=3)=0$ (Since only three balls are drawn)
$P(X=2, Y=0)=P($ drawing 2 white balls and no red balls $)$

$$
=\frac{2 C_{2} \times 4 C_{1}}{9 C_{3}}=\frac{1}{21}
$$

$P(X=2, Y=1)=P($ drawing 2 white balls and no red balls $)$

$$
=\frac{2 C_{2} \times 3 C_{1}}{9 C_{3}}=\frac{1}{28}
$$

$$
\begin{aligned}
& P(X=2, Y=2)=0 \\
& P(X=2, Y=3)=0
\end{aligned}
$$

The joint probability distribution of (X, Y) may be represented as

X	0	1	2	3
0	$\frac{1}{21}$	$\frac{3}{14}$	$\frac{1}{7}$	$\frac{1}{84}$
1	$\frac{1}{7}$	$\frac{2}{7}$	$\frac{1}{14}$	0
2	$\frac{1}{21}$	$\frac{1}{28}$	0	0

Problem 18.a). Two fair dice are tossed simultaneously. Let X denotes the number on the first die and Y denotes the number on the second die. Find the following probabilities.

$$
\text { (i) } P(X+Y)=8 \text {, (ii) } P(X+Y \geq 8) \text {, (iii) } P(X=Y) \text { and (iv) } P(X+Y=6 \neq 4)
$$

b) The joint probability mass function of a bivariate discrete random variable (X, Y) in given by the table.

Y			
Y	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

Find
i. The marginal probability mass function of X and Y.
ii. The conditional distribution of X given $Y=1$.
iii. $P(X+Y<4)$

Solution:

a). Two fair dice are thrown simultaneously

$$
S=\left\{\begin{array}{lll}
(1,1)(1,2) \ldots(1,6) \\
(2,1)(2,2) \ldots(2,6) \\
\cdot & \ldots & . \\
\cdot & \ldots & \cdot \\
(6,1)(6,2) \ldots(6,6)
\end{array}\right), n(S)=36
$$

Let X denotes the number on the first die and Y denotes the number on the second die. Joint probability density function of (X, Y) is $P(X=x, Y=y)={ }^{1} \frac{1}{36}$ for

$$
x=1,2,3,4,5,6 \text { and } y=1,2,3,4,5,6
$$

(i) $X+Y=\{$ the events that the no is equal to 8$\}$

$$
=\{(2,6),(3,5),(4,4),(5,3),(6,2)\}
$$

$$
P(X+Y=8)=P(X=2, Y=6)+P(X=3, Y=5)+P(X=4, Y=4)
$$

$$
+P(X=5, Y=3)+P(X=6, Y=2)
$$

$$
=\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}^{1} \underline{\bar{x}}^{56}{ }^{5} \overline{36}
$$

(ii) $P(X+Y \geq 8)$

$$
X+Y=\left\{\begin{array}{l}
(2,6) \\
(3,5),(6,6),(4,5),(4, \\
(5), 3),(5,4)(5,5), \phi, 6) \\
(6,2),(6,3),(6,4),(6,5)(6,6)
\end{array}\right\}
$$

$\therefore P(X+Y \geq 8)=P(X+Y=8)+P(X+Y=9)+P(X+Y=10)$

$$
\begin{aligned}
& +P(X+Y=11)+P(X+Y=12) \\
& =\frac{5}{36}+\frac{4}{36}+\frac{3}{36}+\frac{2}{36}+\frac{1}{36}=\frac{15}{36}=-\frac{5}{12}
\end{aligned}
$$

(iii) $P(X=Y)$
$P(X=Y)=P(X=1, Y=1)+P(X=2, Y=2)+\ldots \ldots .+P(X=6, Y=$
6)

$$
=\overline{36}_{+} 1 \overline{3 ¢}_{\ldots} \ldots \ldots \ldots+1 \overline{36}^{36}=\frac{6}{36} \overline{6}
$$

(iv) $P(X+Y=6 / Y=4)=\frac{P}{P(Y=4)} \quad 2$

Now $P(X+Y=6 \cap Y=4)=\frac{1}{36}$

$$
P(Y=4)=\frac{6}{36}
$$

$\therefore P(X+Y=6 / Y=4)=\frac{\frac{1}{36}}{\frac{6}{36}}=\frac{1}{6}$.
b). The joint probability mass function of (X, Y) is

Y	1	2	3	Total
1	0.1	0.1	0.2	0.4
2	0.2	0.3	0.1	0.6
Total	0.3	0.4	0.3	1

From the definition of marginal probability function

$$
P_{X}\left(x_{i}\right)=\sum_{y_{j}} P_{X Y}\left(x_{i}, y_{j}\right)
$$

When $X=1$,

$$
\begin{aligned}
P_{X}\left(x_{i}\right) & =P_{X Y}(1,1)+P_{X Y}(1,2) \\
& =0.1+0.2=0.3
\end{aligned}
$$

When $X=2$,

$$
\begin{gathered}
P_{X}(x=2)=P_{X Y}(2,1)+P_{X Y}(2,2) \\
= \\
=0.2+0.3=0.4
\end{gathered}
$$

When $X=3$,

$$
\begin{aligned}
P_{X}(x=3) & =P_{X Y}(3,1)+P_{X Y}(3,2) \\
& =0.2+0.1=0.3
\end{aligned}
$$

\therefore The marginal probability mass function of X is

$$
P_{x}(x)= \begin{cases}0.3 & \text { when } x=1 \\ 0.4 & \text { when } x=2 \\ 0.3 & \text { when } x=3\end{cases}
$$

The marginal probability mass function of Y is given by $P_{Y}\left(y_{j}\right)=\sum P_{x_{i}}\left(x_{i}, y_{j}\right)$
When $Y=1, P_{Y}(y=1)=\sum_{x_{i=1}}^{3} P_{X Y}\left(x_{i}, 1\right)$

$$
\begin{aligned}
& =P_{X Y}(1,1)+P_{X Y}(2,1)+P_{X Y}(3,1) \\
& =0.1+0.1+0.2=0.4
\end{aligned}
$$

When $Y=2, P_{Y}(y=2)=\sum_{x_{i}=1} P_{X Y}\left(x_{i}, 2\right)$

$$
\begin{aligned}
& =P_{X Y}(1,2)+P_{X Y}(2,2)+P_{X Y}(3,2) \\
& =0.2+0.3+0.1=0.6
\end{aligned}
$$

$\therefore \underset{Y}{\text { Marginal pobaa }}= \begin{cases}\text { (pbiylitymass function of } Y \text { is } \\ \text { when } y=1\end{cases}$
(ii) The conditional distribution of X given $Y=1$ is given by

$$
\left.P(X=x / Y=1)=\frac{P}{P(X=x \cap Y=1}\right)
$$

From the probability mass function of $Y, P(y=1)=P_{y}(1)=0.4$
When $\begin{aligned} X=1, P(X=1 / Y=1) & =\frac{P(X=1 \cap Y=1)}{P(Y=1)} \\ & =\frac{P_{X Y}(1,1)}{P_{Y}(1)} 0.4\end{aligned}$
When $X=2, P(X=2 / Y=1)=\frac{P_{X Y}(2,1)}{P_{Y}(1)}=\frac{0.1}{0.4}=0.25$
When $X=3, P(X=3 / Y=1)=\frac{P_{X Y}(3,1)}{P_{Y}(1)}=\frac{0.2}{0.4}=0.5$
(iii). $P(X+Y<4)=P\{(x, y) / x+y<4$ Where $x=1,2,3 ; y=1,2\}$

$$
\begin{aligned}
& =P\{(1,1),(1,2),(2,1)\} \\
& =P_{X Y}(1,1)+P_{X Y}(1,2)+P_{X Y}(2,1) \\
& =0.1+0.1+0.2=0.4
\end{aligned}
$$

Problem 19.a). If X and Y are two random variables having the joint density function $f(x, y)=\frac{1}{27}(x+2 y)$ where x and y can assume only integer values 0,1 and 2 , find the conditional distribution of Y for $X=x$.
b). The joint probability density function of (X, Y) is given by $f_{X Y}\left(x, y \neq\left\{\begin{array}{l}\left\lvert\, x y^{2}+\frac{x^{2}}{8}\right., 0 \leq x \leq 2,0 \leq y \leq 1\end{array}\right.\right.$. Find (i) $P(X>1), \quad$ (ii) $\quad P(X<Y) \quad$ and
(iii) $P(X+Y$ 回 1$)$

Solution:

a). Given X and Y are two random variables having the joint density function ${ }^{1}$

$$
\left.f(x, y)=\frac{(x}{27}+2 y\right)----(1)
$$

Where $x=0,1,2$ and $y=0,1,2$
Then the joint probability distribution X and Y becomes as follows

Mean $=\frac{b+a}{2}=\frac{450+550}{2}=500$
${ }^{2}(b-a)^{2}(550-450)^{2}$
Variance $=\frac{}{12}=\frac{}{12}=833.33$
By CLT $S_{n}=X_{1}+X_{2}+X_{3}+X_{\text {follows a normal distribution with } N\left(n \mu, n \sigma^{2}\right)}$
The standard normal variable is given by $Z=\frac{S_{n}-n \mu}{n \sigma^{2}}$
when $S_{n}=1900, Z=\frac{1900-4 \times 500}{\sqrt{4 \times 833.33}}=-\frac{100}{57.73}=-1.732$
when $S_{n}=2100, Z=\frac{2100-2000}{\sqrt{4 \times 833.33}}=\frac{100}{57.73}=1.732$
$\therefore P\left(1900 \leq S_{n} \leq 2100\right)=P(-1.732<z<1.732)$

$$
=2 \times P(0<z<1.732)=2 \times 0.4582=0.9164
$$

b). Given $E\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=$
1.5 Let X denote the sannple mean.

By C.L.T. X follows N, $\frac{\sqrt{1.5}}{\sqrt{n}} \|$
We have to find ' n ' such that $P(\mu-0.5<\bar{X}<\mu+0.5) \geq 0.95$
i.e. $P(-0.5<\bar{X}-\mu<0.5) \geq 95$

ie $P(|Z|<0.4082 \sqrt{n}) \geq 0.95$
Where ' Z ' is the standard normal variable.
The Last value of ' n ' is obtained from $P(\nmid \mid<0.4082 \sqrt{n})=0.95$
$2 P(0<z<0.4082 \sqrt{n})=0.95$
$\Rightarrow 0.4082$ 存 $1.96 \Rightarrow n=23.05$
\therefore The size of the sample must be atleast 24 .

UNIT - III RANDOM PROCESSES

PART - A

Problem 1. Define I \& II order stationary Process

Solution:

I Order Stationary Process:
A random process is said to be stationary to order one if is first order density function does not change with a shift in time origin.
i.e., $f_{X}\left(x_{1}: t_{1}\right)=f_{X}\left(x_{1}, t_{1}+\delta\right)$ for any time t_{1} and any real number.
i.e., $E[\mathrm{~F} X(t)]\rceil \overline{=} X=$

Constant. II Order Stationary

Process:

A random process is said to be stationary to order two if its second-order density functions does not change with a shift in time origin. i.e., $f_{X}\left(x_{1}, x_{2}: t_{1}, t_{2}\right)=f_{X}\left(x_{1}, x_{2}: t_{1}+\delta, t_{2}+\delta\right)$ for all t_{1}, t_{2} and .

Problem 2. Define wide-sense stationary process

Solution:

A random process $X(t)$ is said to be wide sense stationary (WSS) process if the following conditions are satisfied
(i). $E \notin X(t)]\rfloor=$ i.e., mean is a constant

μ

(ii). $\left.R(\tau)=E\left[\mathrm{~F} X\left(t_{1}\right) X\left(t_{2}\right)\right]\right]$ i.e., autocorrelation function depends only on the time difference.

Problem 3. Define a strict sense stationary process with an example Solution:

A random process is called a strongly stationary process (SSS) or strict sense stationary if all its statistical properties are invariant to a shift of time origin.
This means that $X(t)$ and $X(t+\square)$ have the same statistics for any and any t
Example: Bernoulli process is a SSS process

Problem 4. Define $n^{\text {th }}$ order stationary process, when will it become a SSS process? Solution:

A random process $X(t)$ is said to be stationary to order n or $n^{t h}$ order stationary if its $n^{\text {th }}$ order density function is invariant to a shift of time origin.
i.e., $f_{X}\left(x_{1}, x_{2}, \ldots, x_{n}, t_{1}, t_{2}, \ldots, t_{n}\right)=f_{X}\left(x_{1}, x_{2}, \ldots, x_{n}, t_{1}+\delta, t_{2}+\delta, \ldots, t_{n}+\delta\right) \quad$ for all $t_{1}, t_{2}, \ldots, t_{n} \quad \& \quad h$.
10. Define ergodic process.

Solution:

A random process $\{X(t)\}$ is said to be ergodic, if its ensemble average are equal to appropriate time averages.
11. Define a Gaussian process.

Solution:

A real valued random process $\{X(t)\}$ is called a Gaussian process or normal process, if the random variables $X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)$ are jointly normal for every $n=1,2, \ldots$ and for any set of t_{1}, t_{2}, \ldots

The $n^{\text {th }}$ order density of a Gaussian process is given by
$\left.\left.f\left(x_{1}, x_{2}, \ldots, x_{n} ; t_{1}, t_{2}, \ldots, t_{n}\right)=\frac{1}{\left.(2 \pi)^{n^{2}} h^{1}\right|_{2}} \exp \left|-\frac{1}{2} \Lambda_{i=1}^{n} \sum_{i=1}^{n}\right|_{j=1}\left(\mid x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) \right\rvert\,\right]$
Where $\mu=E\left\{X\left(t_{i}\right)\right\}$ and Λ is the $n^{\text {th }}$ order square matrix (λ), where $8_{i j}=C\left\{X\left(t_{i}\right), X\left(t_{j}\right)\right\}$ and $\left.\left.\right|^{\Lambda}\right|_{j}=$ Cofactor of $\lambda_{i j}$ in $\quad|\Lambda|$.

12. Define a Markov process with an example.

Solution:

If for $t_{1}<t_{2}<t_{3}<\ldots<t_{n}<t$,
$P\left\{X(t) \leq x / X\left(t_{1}\right)=x_{1}, X\left(t_{2}\right)=x_{2}, \ldots, X\left(t_{n}\right)=X_{n}\right\}=P\left\{X(t) \leq x / X\left(t_{n}\right)=x_{n}\right\}$
then the process $\{X(t)\}$ is called a markov process.
Example: The Poisson process is a Markov Process.
13. Define a Markov chain and give an example.

Solution:

If for all n,
$P\left\{X_{n}=a_{n} / X_{n-1}=a_{n-1}, X_{n-2}=a_{n-2}, \ldots X_{0}=a_{0}\right\}=P\left\{X_{n}=a_{n} / X_{n-1}=a_{n-1}\right\}$,
then the process $\left.\dot{x}_{n}\right\}, n=0,1, \ldots$ is called a Markov chain.
Example: Poisson Process is a continuous time Markov chain.
Problem 14. What is a stochastic matrix? When is it said to be regular?
Solution: A sequence matrix, in which the sum of all the elements of each row is 1 , is called a stochastic matrix. A stochastic matrix P is said to be regular if all the entries of P^{m} (for some positive integer m) are positive.
Problem 15. If the transition probability matrix of a markov chain is $\left(\begin{array}{cc}0 & 1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ find the steady-state distribution of the chain.

Solution:

Let $\pi=\left(\pi, \pi_{2}\right)$ be the limiting form of the state probability distribution on stationary state distribution of the markov chain.
$\left.\left.\begin{array}{c}\text { By the propert }\left(\begin{array}{ll}\text { of } & \pi \\ 0 & 1\end{array}\right) \pi P=\pi \\ \text { i.e., }(\pi, \pi\end{array}\right) \left\lvert\, \begin{array}{cc}1 \\ h 2 & \frac{1}{2}\end{array}\right.\right)=(\pi, \pi)$

$$
\begin{align*}
& \frac{1}{2} \pi_{2}=\pi_{1} \tag{1}\\
& { }_{1}+\frac{1}{1} \frac{\pi}{2} \quad{ }_{2}=\pi_{2}-----(2
\end{align*}
$$

Equation (1) \& (2) are one and the same.
Consider (1) or (2) with $\pi_{1}+\pi_{2}=1$, since π is a probability distribution.
$\pi_{1}+\pi_{2}=1$
Using (1), ${ }^{1} \pi_{2}{ }_{2}+\pi_{2}=1$

```
\(\underline{3 \pi_{2}}=1\)
    \({ }_{2} 2\)
\(\pi=\)
    \({ }^{2} \quad \overline{3}\)
    \(\underset{1}{\pi=1-\pi}=1-\frac{2}{3}=\frac{1}{3}\)
\(\pi_{2}=1-\pi_{1} \quad=1-\frac{1}{3}=\frac{2}{3}\)
\(\therefore \pi=1 \frac{\&}{3} \pi=2_{2}^{2} . \overline{3}\)
```

PART-B
Problem 16. a). Define a random (stochastic) process. Explain the classification of random process. Give an example to each class.

Solution:

RANDOM PROCESS

A random process is a collection (orensemble) of random variables $\{X(s, t)\}$ that are functions of a real variable, namely time t where s Q (sample space) and $t \boxtimes T$ (Parameter set or index set).

CLASSIFICATION OF RANDOM PROCESS

Depending on the continuous on discrete nature of the state space S and parameter set T, a random process can be classified into four types:
(i). It both $T \& S$ are discrete, the random process is called a discrete random sequence.

Example: If X_{n} represents the outcome of the $n^{\text {th }}$ toss of a fair dice, then $\left\{X_{{ }_{n}} n \geq 1\right\}$ is a discrete random sequence, since $T=\{1,2,3, \ldots\}$ and $S=\{1,2,3,4,5,6\}$.
(ii). If T is discrete and S is continuous, the random process is called a continuous random sequence.
Example: If X_{n} represents the temperature at the end $n^{\text {th }}$ hour of a day, then $\left\{X_{n}, 1 \leq n \leq 24\right\}$ is a continuous random sequence since temperature can take any value is an interval and hence continuous.
(iii). If T is continuous and S is discrete, the random process is called a discrete random process.
Example: If $X(t)$ represents the number of telephone calls received in the interval $(0, t)$ then $\ X(t)\}$ random process, since $S=\{0,1,2,3, \ldots\}$.
(iv). If both T and S are continuous, the random process is called a continuous random process f
Example: If $X(t)$ represents the maximum temperature at a place in the interval $(0, t)$ $\{X(t)\}$ is a continuous random process.
b). Consider the random process $X(t)=\cos (t+\varphi)$, where φ is uniformly distributed in the interval $-\frac{\pi}{2}$ to $\frac{\pi}{2}$. Check whether the process is stationary or not.

Solution:

Since 0 is uniformly distributed in $-\pi, \pi$

$$
\begin{aligned}
& f(q)=\frac{1}{\pi},-_{2}^{\pi}<0 y^{\frac{\pi}{2}} 2 \\
& { }_{z}^{\pi} \\
& E \notin X(t)]]=\int_{\frac{\pi}{2}} X(t) f(\not \varnothing) d \varnothing \\
& =\begin{array}{l}
\left\{\begin{array}{l}
\frac{\pi}{2} \\
\cos (t+0) \\
\hline
\end{array}\right] \frac{1}{\pi} / 20
\end{array} \\
& =\int_{\pi}^{2} \cos (t+0) d 0 / \\
& \left.=\frac{1^{2}}{\pi^{2}} \sin (t+0)\right]_{\underline{-\pi}_{-2}^{2}}^{2^{\frac{\pi}{2}}} \\
& =\frac{2}{\pi} \cos t \neq \text { Constant } .
\end{aligned}
$$

Since $E \notin X[t \quad$ is a function of t, the random process $\{X(t)\}$ is not a stationary)]
process.

Problem 17. a). Show that the process $\{X(t)\}$ whose probability distribution under certain conditions is given by $P\{X(t)=n\}= \begin{cases}\frac{(a t)^{n-1}}{(1+a t)}, & n=1,2, \ldots \\ \left.\right|_{1} \frac{a t}{}, n=0 & \text { is evolutionary. } \\ \text { Solution: } & n+a t\end{cases}$ The probability distribution is given by

$$
\begin{aligned}
& X(t)=n \quad: \quad 0 \quad 1 \quad 2 \quad 3 \quad . . \\
& P(X(t)=n) \quad: \frac{a t}{1+a t} \frac{1}{(1+a t)^{2}} \quad \frac{a t}{(1+a t)^{3}} \frac{(a t)^{2}}{(1+a t)^{4}} \ldots . \\
& E \text { ¢ } X(t)] \text {] }=\sum_{n=0}^{\infty} n p_{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\left.(1+a t)^{4!}\right]^{10} \frac{\left.a t\right|^{12}}{1+a a^{8}}} \\
& E\{X(t)]\rceil=1=\text { Constant } \\
& \left.\left.E \text { 中 } X^{2}(t)\right]\right\rfloor=\sum_{n=0}^{\infty} n^{2} p_{n}
\end{aligned}
$$

$\left.E\left\{X^{2}(t)\right]\right\rceil=1+2 a t \neq$ Constant
$\operatorname{Var} \ X(t)\}=E\left|X^{2}(t)\right| E(X(t))^{2}$
$\operatorname{Var} \ X(t)\}=2 a t$
\therefore The given process $\lfloor X(t)\}$ is evolutionary
b). Examine whether the Poisson process $\{X(t)\}$ given by the probability law

$$
e^{-x}(\lambda t)^{n}
$$

$P\{X(t)=n\}=\frac{}{n!}, n=0,1,2, \ldots$ is evolutionary.

Solution:

$$
\begin{aligned}
& E \text { 中 } X(t)]]=\sum_{\infty=0}^{\infty} n_{n} p_{n} e^{-\lambda t}(\lambda t)^{n} \\
& =\sum_{n=0} n \frac{}{n!} \\
& =\sum_{n=1}^{\infty} \frac{e^{-x}\left(\lambda_{t}\right)^{n}}{(n-1)!}
\end{aligned}
$$

$$
\begin{aligned}
& =(\lambda t) e^{-x} e^{x} \\
& E \notin X(t)]\rfloor=\lambda t \\
& E\{X(t)]\rceil \neq
\end{aligned}
$$

Constant.

Hence the Poisson process $\{X(t)\}$ is evolutionary.
Problem 18. a). Show that the random process $X(t)=A \cos (\omega t+\theta)$ is WSS if $A \& \omega$ are constants and θ is uniformly distributed random variable in $(0,2 \pi)$.

Solution:

$$
\begin{aligned}
f(\theta) & =\left\{\begin{array}{l}
\frac{1}{2 \pi}, 0<0<2 \pi \\
0, \text { elsewhere }
\end{array}\right. \\
E \in X(t)] & =\int_{0}^{2 \pi} X(t) f(\theta) d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2 \pi} A \cos (\omega t+\theta) d \theta \\
& =\frac{A}{2 \pi} \int_{0}^{2 \pi} \cos (\omega t+\theta) d \theta \\
& \left.=\frac{A}{2 \pi} \sin (\omega t+\theta)\right]^{2 \pi}
\end{aligned}
$$

Since is uniformly distributed random variable in $(0,2 \pi)$

$$
\begin{aligned}
& \left.=\frac{A}{2 \pi}[\sin (\omega t+2 \pi)-\sin (\omega t)]\right] \\
& \left.=\frac{A}{2 \pi}[\sin (\omega t)-\sin (\omega t)] \quad \mathrm{E} \sin (2 \pi+\theta)=\sin \theta\right] \\
& E \text { 琣 } X(t)] \text {] }=0 \\
& \left.\left.R_{X X}\left(t_{1}, t_{2}\right)=E \quad X\left(t_{1}\right) X\left(t_{2}\right)\right]\right] \\
& =E \text { 覑 } \cos (\omega t+\theta) \cos (\omega t+\theta)]] \\
& \begin{array}{l}
=A^{2} E \int_{1}^{\left.F \cos \left(\omega\left(t_{1}+t_{2}\right)+2 \theta\right)+\cos \left(\omega\left(t_{1}-t_{2}\right)\right)\right]} \\
\left.=\frac{A^{2}}{2} \int_{2 \pi}^{2} \frac{\mathrm{~F}}{2 \pi} \cos \left(\omega\left(t_{1}+t_{2}\right)+2 \theta\right)+\cos \left(\omega\left(t_{1}-t_{2}\right)\right)\right] d \theta
\end{array} \\
& =\frac{A^{2}}{4 \pi}\left\{\left.\begin{array}{ll}
\frac{\sin \left[\omega\left(t_{1}+t_{2}\right)+2 \theta\right]}{2} & \cos \omega t \mid
\end{array}\right|_{1} ^{2 \pi}\right. \\
& =\frac{A^{2}}{4 \pi}[2 \pi \cos \omega t] \\
& =\frac{A^{2}}{2} \cos \omega t=\text { a function of time difference }
\end{aligned}
$$

Since E \＆$X(t)]\rceil=$ constant
$R_{X X}\left(t_{1}, t_{2}\right)=$ a function of time difference
$\therefore\{X(t)\}$ is a WSS．
b）．Given a random variable y with characteristic function $\varphi(\omega)=E\left(e^{i \omega y}\right)$ and a random process define by $X(t)=\cos (\lambda t+y)$ ，show that $\{X(t)\} \quad$ is stationary in the wide sense if $\varphi(1)=\varphi(2)=0$ ．

Solution：

```
Given \(0(1)=0\)
\(\Rightarrow E[\cos y+i s i n y]=0\)
    \(\therefore E[\cos y]=E[\sin y]=0\)
Also \(\varnothing(2)=0\)
\(\Rightarrow E[\cos 2 y+i \sin 2 y]=0\)
    \(\therefore E[\cos 2 y]=E[\sin 2 y]=0\)
\(\left.E\{X(t)\}=E \operatorname{tas}\left(\lambda_{t}+y\right)\right]\)
    \(=E[\cos \lambda t \cos y-\sin \lambda t \operatorname{tin} y]\)
```

$$
\begin{aligned}
& =\cos \lambda t E[\cos \lambda t]-\sin \lambda t E[\sin y]=0 \\
& \left.\left.R_{X X}\left(t_{1}, t_{2}\right)=E \quad X\left(t_{1}\right) X\left(t_{2}\right)\right]\right] \\
& =E\left[\cos \left(\lambda_{1}+y\right) \cos \left(\lambda_{2}+y\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{1}{2} \cos \lambda\left(t+t{ }_{2}^{2}\right) E(\cos 2 y)-\frac{1}{2} \sin \lambda\left(t+t{ }_{2}\right) E(\sin 2 y)+\frac{1}{2} \cos (\lambda(t-t))_{2}\right) \\
& =\frac{1}{2} \cos \left(\lambda\left(t_{1}-t\right)\right)=\mathrm{a} \text { function of time difference. }
\end{aligned}
$$

Since $E\{X(t)]\rceil=$ constant
$R_{X X}\left(t_{1}, t_{2}\right)=$ a function of time difference $\therefore\{X(t)\}$ is stationary in the wide sense.

Problem 19. a). If a random process $\{X(t)\}$ is defined by $\{X(t)\}=\sin (\omega t+Y)$ where Y is uniformly distributed in $(0,2 \pi)$. Show that $\{X(t)\}$ is WSS.

Solution:

Since y is uniformly distributed in $(0,2 \pi)$,

$$
\begin{aligned}
& f(y)=\frac{1}{2 \pi}, 0<y<2 \pi \\
& E \text { 中 } X(t)]]=\int_{0}^{2 \pi} X(t) f(y) d y \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (\omega t+y) d y \\
& =\left.\frac{1}{2 \pi} \hat{F} \cos (\omega t+y)\right|_{0} ^{2 \pi} \\
& =-\frac{1}{2 \pi}[\cos (\omega t+2 \pi)-\cos \omega t] \neq 0 \\
& R_{X X}\left(t_{1}, t_{2}\right)=E\left[\sin \left(\omega t_{1}+y\right) \sin \left(\omega t_{2}+y\right)\right] \\
& =E\left[\left.\frac{\left.\operatorname{Fos}\left(\omega\left(t_{1}-t_{2}\right)\right)-\cos \left(\omega\left(t_{1}+t_{2}\right)+2 y\right)\right]}{2}| | \right\rvert\,\right.
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{2} \cos \left(\omega\left(t_{1}-t_{2}\right)\right)-\frac{1}{2} \int_{0}^{2 \pi} \cos \left(\omega\left(t_{1}+t_{2}\right)+2 y\right) \frac{1}{2} d y \\
& \left.=\frac{1}{2} \cos \left(\omega\left(t_{1}-t_{2}\right)\right)-\frac{1}{4 \pi} \right\rvert\, \frac{\sin \left(\omega\left(t_{1}+t\right)+2 y\right)}{2} \\
&\left.=\frac{1}{2} \cos \left(\omega\left(t-t_{2}\right)\right)-\frac{1}{8 \pi} \sin \left(\omega\left(t_{1}+t_{2}\right)+2 \pi\right)-\sin \omega\left(t_{1}+t_{2}\right)\right] \\
&=\frac{1}{2} \cos \left(\omega\left(t-t_{2}\right)\right) \text { is a function of time difference. } \\
& \therefore\{X(t)\} \text { is WSS. }
\end{aligned}
$$

b). Verify whether the sine wave random process
$X(t)=Y \sin \omega t, \quad Y$ is uniformly distributed in the interval $\left(\mathrm{H}_{1}, 1\right)$ is WSS or not

Solution:

Since y is uniformly distributed in $(01,1)$,

$$
\begin{aligned}
f(y) & =\frac{1}{2},-1<y<1 \\
E[X(t)] & =\int_{-1}^{1} X(t) f(y) d y \\
& =\int_{-1}^{1} y \sin \omega t \frac{1}{2} d y \\
& =\frac{\operatorname{in}^{1} \omega t}{2} \int_{-1}^{1} y d y \\
& =\frac{\operatorname{Sin} \omega t}{2}(0)=0
\end{aligned}
$$

$$
\left.\left.R_{X X}\left(t_{1}, t_{2}\right)=E \quad X\left(t_{1}\right) X\left(t_{2}\right)\right]\right\rfloor
$$

$$
\left.=E \mathrm{~F}\left[y^{2} \sin \omega t \sin \omega t\right]_{2}\right]
$$

$$
=E\left[y \frac{\mathrm{~F}}{2} \frac{\cos \omega\left(t_{1}-t_{2}\right)-\cos w\left(t_{1}+t_{2}\right)}{2}\right]
$$

$$
=\frac{{ }^{E}[y}{} \frac{{ }^{2} \omega}{}\left(t_{1}-t_{2}\right)-\cos w\left[t_{1}+t_{2}\right]-E\left(y^{2}\right)
$$

$$
\begin{aligned}
& \left.=\frac{\cos \omega(t-t) 2^{2} \cos w(t+t)}{1}\right)_{2}^{1} \int_{1_{1}} y^{2} f(y) d y \\
& =\frac{\cos \omega\left(\frac{t-t)}{1}\right)_{2}^{2}-\cos w\left(\frac{t+t}{1}\right)_{2}^{2}}{2} \int_{2}^{1} y^{2} d y
\end{aligned}
$$

Unit.3. Classification of Random Processes

$R_{X X}\left(t_{1}, t_{2}\right)$ a function of time difference alone.
Hence it is not a WSS Process.
Problem 20. a). Show that the process $X(t)=A \cos \lambda t+B \sin \lambda t$ (where A \& B are random variables) is WSS, if (i) $E(A)=E(B)=0$ (ii) $E\left(A^{2}\right)=E\left(B^{2}\right)$ and (iii) $E(A B)=0$.

Solution:

Given $X(t)=A \cos \lambda t+B \sin \lambda t, E(A)=E(B)=0, E(A B)=0$,
$E\left(A^{2}\right)=E\left(B^{2}\right)=k(s a y)$
$E \notin X(t)] \mid=\cos \lambda t E(A)+\sin \lambda t E(B)$
$E\{X(t)]\rceil=0=$ is a constant. $\square E(A)=E(B)=0$
$R\left(t_{1}, t_{2}\right)=E\left\{X\left(t_{1}\right) X\left(t_{2}\right)\right\}$
$=E\left\{\left(A \cos \lambda t_{1}+B \sin \lambda t_{1}\right)\left(A \cos \lambda t_{2}+B \sin \lambda t_{2}\right)\right\}$
$=E\left(A^{2}\right) \cos \lambda t \cos \lambda t+E\left(B^{2}\right) \sin \lambda t \sin \lambda t+E(A B)\left[\sin \lambda t \cos \lambda t{ }_{2}+\cos \lambda t \sin \lambda t\right]$
$=E\left(A^{2}\right) \cos \lambda t \cos \lambda t+E\left(B^{2}\right) \sin \lambda t \sin \lambda t+E_{2}(A B) \sin \lambda(t+t)_{1}$
$=k\left(\cos \lambda t_{1} \cos \lambda t_{2}+\sin \lambda t_{1} \sin \lambda t_{2}\right)$
$=k \cos \lambda\left(t_{1}-t_{2}\right)=$ is a function of time difference.
$\therefore\{X(t)\}$ is WSS.
b). If $X(t)=Y \operatorname{cost}+Z$ sint for all $t \&$ where $Y \& Z$ are independent binary random variables. Each of which assumes the values $-1 \& 2$ with probabilities $\frac{2}{3} \& \frac{1}{3}$ respectively, prove that $\{X(t)\}$ is WSS.

Solution:

Given

$$
\begin{array}{cccc}
Y=y & : & 2 & 2 \\
P(Y=y) & : & \frac{2}{3} & \frac{1}{3}
\end{array}
$$

$E(Y)=E(Z)=-1 \times^{\underline{2}}+2 \times^{1}=0$
$E\left(Y^{2}\right)=E\left(Z^{2}\right)=(-1)^{2} \times \frac{2}{3}+(2)^{2} \times \frac{1}{3}$
$E\left(Y^{2}\right)=E\left(Z^{2}\right)=\frac{2}{3}+\frac{4}{3}=\frac{6}{3}=2$
Since $Y \& Z$ are independent
$E(Y Z)=E(Y) E(Z)=0$
Hence $E\{X(t)]\rceil=E[y \cos t+z \sin t]$

$$
=E[y] \cos t+E[z] \sin t
$$

$E\{X(t)\rfloor\rceil=0=$ is a
$E E(y)=E(z)=0]$
constant.
$R_{X X}\left(t_{1}, t_{2}\right)=E \notin X\left(t_{1}\right) X\left(t_{2}\right.$
)]

$$
\begin{aligned}
& \left.=E\left[\mathrm{~F}\left(y \cos t_{1}+z \sin t_{1}\right)\left(y \cos t_{2}+z \sin t_{2}\right)\right]\right] \\
& \left.=E \mathrm{~F}\left[y^{2} \cos t_{2}+y z \cos t_{1} \sin t_{2}+z y \sin t_{1} \cos t_{2}+z^{2} \sin t \operatorname{sint}\right]\right] \\
& \operatorname{cost}] \\
& \left.\left.=E\left(y^{2}\right) \operatorname{cosst}_{1} \cos t_{2}+E[y z] \cos t_{1} \sin t_{2}+E[z y] \sin t_{1} \cos t_{2}+E \mathrm{E}\right]\right] \sin t \sin t_{2} \\
& =E\left(y^{2}\right) \cos t_{1} \cos t_{2}+E\left(z^{2}\right) \operatorname{sint} \sin t_{2} \\
& =2\left[\operatorname{cost} \cos t_{2}+\operatorname{sint} \operatorname{sint}\right]\left[E\left(y^{2}\right)=E\left(z^{2}\right)=2\right] \\
& 1 \\
& =2 \cos \left(t_{1}-t_{2}\right)=\text { is a function of time difference. }
\end{aligned}
$$

$\therefore\{X(t)\}$ is WSS.
Problem 21. a). Check whether the two random process given by $X(t)=A \cos \omega t+B \sin \omega t \& Y(t)=B \cos \omega t-A \sin \omega t$. Show that $X(t) \& Y(t)$ are jointly WSS if A \& B are uncorrelated random variables with zero mean and equal variance random variables are jointly WSS.

Solution:

$$
\begin{aligned}
& \text { Given } E(A)=E(B)=0 \\
& \operatorname{Var}(A)=\operatorname{Var}(B)=\sigma^{2} \\
& \therefore E\left(A^{2}\right)=E\left(B^{2}\right)=\sigma^{2}
\end{aligned}
$$

As $A \& B$ uncorrelated are $E(A B)=E(A) E(B)=0$.

$$
E \notin X(t)]\rceil=E[A \cos \omega t+B \sin \omega t]
$$

$$
=E(A) \cos \omega t+E(B) \sin \omega t=0
$$

$E\{X(t)] \mid=0=$ is a constant.
$\left.R_{X X}\left(t_{1}, t_{2}\right)=E\left[\mathrm{FX}\left(t_{1}\right) X\left(t_{2}\right)\right]\right\rfloor$

Unit.3. Classification of Random Processes

$$
=E\left[\left(A \cos w t_{1}+B \sin w t_{2}\right)\left(A \cos w t_{2}+B \operatorname{sinw} t_{2}\right)\right.
$$

```
\(=E^{1} A^{2} \cos w t \cos w t+A B \cos w t \sin w t+B A \sin w t c^{2} o s w t+B \sin w t \sin w t\)
```



```
\(=\square^{2}\left[\cos \omega t \cos _{1}^{2} \omega t+\sin \omega t \sin _{1} \omega t\right]_{2}\)
\(=\square^{2} \cos w(t \text { 星 } t)_{2} \quad\left[E\left(A^{2}\right)=E\left(B^{2}\right)=\sigma^{2} \& E(A B)=E(B A)=0\right]\)
```

$R_{X X}\left(t_{1}, t_{2}\right)=$ is a function of time difference.
$E[Y(t)]=E[B \cos \omega t-A \sin \omega t]$
$=E(B) \cos \omega t-E(A) \sin \omega t=0$
$\left.R_{Y Y}\left(t_{1}, t_{2}\right)=E \not\left[\left(B \cos \omega t_{1}-A \sin \omega t_{1}\right)\left(B \cos \omega t_{2}-A \sin \omega t_{2}\right)\right]\right\rfloor$
$\left.=E\left[B^{2} \cos \omega t c_{1} o s \omega t_{2}-B A \cos \omega t \sin \omega t-A B \sin \omega t c_{1}^{2} o s \omega t{ }_{2}+A \sin \omega t \sin \omega t\right]_{2}\right]$
$=E\left(B^{2}\right) \cos \omega t \cos \omega t{ }_{2}-E(B A) \cos \omega t \sin \omega t-{ }_{2} E\left(A^{2} B\right) \sin \omega t \cos \omega t+{ }_{2} E(A) \sin \omega t \sin \omega t$
$=\sigma^{2} \cos \omega(t-t)_{2} \quad\left[\square E\left(A^{2}\right)=E\left(B^{2}\right)=\sigma^{2} \& E(A B)=E(B A)=0\right]$
$R_{Y Y}\left(t_{1}, t_{2}\right)=$ is a function of time difference.

$$
\begin{aligned}
R_{X Y}\left(t_{1}, t_{2}\right) & \left.\left.=E \text { 民 } X\left(t_{1}\right) Y\left(t_{2}\right)\right]\right] \\
& \left.\left.=E \text { Ң }\left(A \cos \omega t_{1}+B \sin \omega t_{1}\right)\left(B \cos \omega t_{2}+A \sin \omega t_{2}\right)\right]\right] \\
& \left.=E \mathrm{~F}\left[A B \cos \omega t_{1} \cos \omega t_{2}-A^{2} \cos \omega t \sin \omega t_{2}+B^{2} \sin \omega t \cos \omega t_{2}-B A \sin \omega t \sin \omega t\right]_{2}\right] \\
& =\sigma^{2}[\sin \omega t \cos \omega t-\cos \omega t \sin \omega t]_{1}^{1} \\
& =\sigma^{2} \sin \omega\left(t_{1}^{1}-t\right)_{2}^{2} \quad\left[E\left(A^{2}\right)^{2}=E\left(B^{2}\right)=\sigma^{2} \& E(A B)=E(B A)=0\right]
\end{aligned}
$$

$R_{X Y}\left(t_{1}, t_{2}\right)=$ is a function of time difference.
Since $\{X(t)\} \&\{Y(t)\}$ are individually WSS \& also $\quad R_{X Y}\left(t_{1}, t_{2}\right)$ is a function of time difference.
(2) The two random process $\{X(t)\} \&\{Y(t)\}$ are jointly WSS.
b). Write a note on Binomial process.

Solution:

Binomial Process can be defined as a sequence of partial sums $\left[S_{n} / n=1,2, \ldots\right\}$ Where $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$ Where $\quad X_{i}$ denotes 1 if the trial is success or 0 if the trial is failure.
As an example for a sample function of the binomial random process with $\left(x_{1}, x_{2}, \ldots\right)=(1,1,0,0,1,0,1, \ldots)$ is $\left(s_{1}, s_{2}, s_{3}, \ldots\right)=(1,2,2,2,3,3,4, \ldots)$, The process increments by 1 only at the discrete times $t_{i} t_{i}=i T, i=1,2, \ldots$
Properties
(i). Binomial process is Markovian
(ii). S_{n} is a binomial random variable so, $P\left(S_{n}=m\right)=n C_{m} p^{m} q^{n}{ }^{m}, \quad E\left[S_{n}\right]=n p \&$ $\operatorname{var}\left[S_{n}\right]=n p(1 ® p)$
(iii) The distribution of the number of slots m_{i} between $i^{\text {h }}$ and $(i \mathbb{1})^{h h}$ arrival is geometric with parameter p starts from 0 . The random variables $m_{i}, i=1,2, \ldots$ are mutually independent.
The geometric distribution is given by $p(1 \mathbb{\square} p)^{i_{1}}, i=1,2, \ldots$
(iv) The binomial distribution of the process approaches poisson when n is large and p is small.

Problem 22. a). Describe Poisson process \& show that the Poisson process is Markovian. Solution:

If $\{X(t)\}$ represents the number of occurrences of a certain event in $(0, t)$ then the discrete random process $\{X(t)\}$ is called the Poisson process, provided the following postulates are satisfied
(i) $P[$ Hoccumence in $(t, t+\Delta t)]=\lambda \Delta t+o(\Delta t)$
(ii) $P[$ noo occurrence in $(t, t+\Delta t)]=1-\lambda \Delta t+o(\Delta t)$
(iii) $P \nmid 2$ or more occurrences in $(t, t+\Delta t)]=o(\Delta t)$
(iv) $X(t)$ is independent of the number of occurrences of the event in any interval prior and after the interval $(0, t)$.
(v) The probability that the event occurs in a specified number of times $\left(t_{0}, t_{0}+t\right)$ depends only on t, but not on t_{0}.
Consider

$$
\begin{aligned}
& \left.\left.P t^{p} X X_{3}=n / X\left(t_{2}\right)=n_{2}, X(t)_{1}=n\right)\right]=\frac{\left.P\left\lfloor F X\left(t_{1}\right)=n_{1}, X\left(t_{2}\right)=n_{2}, X\left(t_{3}\right)=n_{3}\right]\right]}{P\left[X(t)=n, X(t)_{2}=n_{2}\right]} \\
& \left.\begin{array}{llll}
-\lambda t & n & n & -t
\end{array}\right)_{n_{2}-n_{1}}(t \\
& =\frac{\left.e{ }^{3} \lambda t:\left(t_{2}\right)_{1}{ }_{3}-t_{2}\right)^{n_{3}-n_{2}}}{n_{1}!\left(n_{2}-n_{1}\right)!\left(n_{3}-n_{2}\right)!} \\
& =\frac{e^{-\lambda t_{2}} \lambda^{n_{2}} t n_{1}^{n_{1}}\left(t_{2}-t_{1}\right)^{n_{2}-n_{1}}}{n_{1}!\left(n_{2}-n_{1}\right)!} \\
& =\frac{e^{-\lambda\left(x_{3}-t_{2}\right) \lambda^{n_{3}-n_{2}}}\left({ }_{3}-t_{2}\right)^{n_{3}-n_{2}}}{\left(n_{3}-n_{2}\right)!}
\end{aligned}
$$

$\left.P E X\left(t_{3}=n_{3} / X\left(t_{2}\right)=n_{2}, X\left(t_{1}\right)=n_{1}\right)\right]=P\left(X X\left(t_{3}\right)=n_{3} / X\left(t_{2}\right)=n_{2}\right]$
This means that the conditional probability distribution of $X\left(t_{3}\right)$ given all the past values $X\left(t_{1}\right)=n_{1}, X\left(t_{2}\right)=n_{2}$ depends only on the most recent values $X\left(t_{2}\right)=n_{2}$.

UNIT - IV CORRELATION AND SPECTRAL DENSITIES

PART-A

Problem1. Define autocorrelation function and prove that for a WSS process $\{X(t)\}$, $R_{X X}(-\tau)=R_{X X}(\tau)$ 2.State any two properties of an autocorrelation function.

Solution:

Let $\{X(t)\}$ be a random process. Then the auto correlation function of the process $\{X(t)\}$ is the expected value of the product of any two members $X\left(t_{1}\right)$ and $X\left(t_{2}\right)$ of the process and is given by $\left.R_{X X}\left(t_{1}, t_{2}\right)=E\left[\mathrm{FX}\left(t_{1}\right) X\left(t_{2}\right)\right]\right] \quad$ or $\left.R_{X X}(t, t+\tau)=E E X(t) X(t+\tau)\right]$
For a WSS process $\{X(t)\}, R_{X X}(\tau)=E$ \{ $\left.X(t) X(t-\tau)\right]$]
$\left.\therefore R_{X X}(-\tau)=E[X(t) X(t+\tau)]=E E X(t+\tau) X(t)\right]=R(t+\tau-t)=R(\tau)$
Problem 2. State any two properties of an autocorrelation function.

Solution:

The process $\{X(t)\}$ is stationary with autocorrelation function $R(\tau)$ then
(i) $R(\tau)$ is an even function of τ
(ii) $R(\tau)$ is maximum at $\tau=0$ i.e., $|R(\tau)| \leq R(0)$

Problem 3. Given that the autocorrelation function for a stationary ergodic process with no periodic components is $R(\tau)=25+\frac{4}{1+6 \tau^{2}}$. Find the mean and variance of the process $\{X(t)\}$.

Solution:

$\mu_{x}^{2}=\underset{\tau \rightarrow \infty}{L t} R(\tau)=\stackrel{L t}{\tau \rightarrow \infty} 25+\frac{4}{1+6 \tau^{2}}=25$
$\therefore \mu_{x}=5$
$E\left(X^{2}(t)\right)=R_{X X}(0)=25+4=29$
$\left.\left.\operatorname{Var}(X(t))=E\left[X^{2}(t)\right]-E \notin X(t)\right]\right]^{2}=29-25=4$
Problem 4. Find the mean and variance of the stationary process $\{X(t)\}$ whose $25 \tau^{2}+36$
autocorrelation function $R(\tau)=\frac{25}{6.25 \tau^{2}+4}$.

Solution:

$R(\tau)=\frac{25 \tau^{2}}{6.25 \tau^{2}+4}=\frac{25+\frac{36}{\tau^{2}}}{6.25+\frac{4}{\tau^{2}}}$
$\mu_{x}^{2}=\underset{\tau \rightarrow \infty}{L t} R(\tau)=\frac{25}{6.25}=\frac{2500}{625}=4$
$\mu_{x}=2$
$\left.\left.E \notin X^{2}(t)\right]\right\rceil=R_{X X}(0)=\frac{36}{4}=9$
$\operatorname{Var} X(t)]=\{E[X(t)]\}^{2}-E[X(t)]^{2}=9-4=5$
Problem 5. Define cross-correlation function and mention two properties. Solution:

The cross-correlation of the two process $\{X(t)\}$ and $\{Y(t)\}$ is defined by
$\left.\left.R_{X Y}\left(t_{1}, t_{2}\right)=E X\left(t_{1}\right) Y\left(t_{2}\right)\right]\right\rfloor$
Properties: The process $\{X(t)\}$ and $\{Y(t)\}$ are jointly wide-sense stationary with the cross-correlation function $R_{X Y}(\tau)$ then
(i) $R_{X X}(\tau)=R_{X Y}(-\tau)$
(ii) $\mid R_{X Y}(\tau) \leqslant \sqrt{R_{X X}(0) R_{Y Y}(0)}$

Problem 6. Find the mean - square value of the process $\{X(t)\}$ if its autocorrelation function is given by $R(\tau)=e^{\tau^{2}} / \mathcal{L}$.
Solution:

$$
\text { Mean-Square value }=E\left\{\left[X^{2}(t)\right]\right\rfloor=R_{X X}(0)=\left.\left.\right|_{\mathrm{h}} e^{\frac{1}{2}}\right|_{\tau=0}=1
$$

Problem 7. Define the power spectral density function (or spectral density or power spectrum) of a stationary process?

Solution:

If $\{X(t)\}$ is a stationary process (either in the strict sense or wide sense with auto correlation function $R(\tau)$, then the Fourier transform of $R(\tau)$ is called the power spectral density function of $\{X(t)\}$ and denoted by $S_{X X}(\omega)$ or $S(\omega)$ or $S_{X}(\omega)$

$$
\text { Thus } S(\omega)=\int_{-\infty}^{\infty} R(\tau) e^{-i \omega \tau} d \tau
$$

Problem 8. State any two properties of the power spectral density function.

Solution:

(i). The spectral density function of a real random process is an even function.
(ii). The spectral density of a process $\{X(t)\}$, real or complex, is a real function of ω and non-negative.
Problem 9. State Wiener-Khinchine Theorem.

Solution:

If $X_{T}(\omega)$ is the Fourier transform of the truncated random process defined as
$X_{T}(t)= \begin{cases}\mid X(t) & \text { for }|t| \leq T \\ 0 & \text { for }|t|>T\end{cases}$
 $\left.S(\omega)={ }_{T \rightarrow \infty} \|\left._{\left\lfloor_{2 T}\right.}\right|_{T}| |\right\rfloor$
Problem 10. If $R(\tau)=e^{-2 \lambda(\tau)}$ is the auto Correlation function of a random process $\{X(t)\}$, obtain the spectral density of $\{X(t)\}$.

Solution:

$$
\begin{aligned}
S(\omega) & =\int_{-\infty}^{\infty} R(\tau) e^{-i \omega \pi} d \tau \\
& =\int_{-\infty}^{\infty} e^{-2 \lambda \pi}(\cos \omega \tau-i \sin \omega \tau) d \tau \\
& =2 \int^{-2 \lambda} \cos \omega \tau d \tau \\
& =\left[\left.\frac{2 e^{-2 \pi}}{4 \lambda^{2}+\omega^{2}}(-2 \lambda \cos \omega \tau+\omega \sin \omega \tau) \right\rvert\,\right. \\
S(\omega) & =\frac{4 \lambda}{4 \lambda^{2}+\omega^{2}}
\end{aligned}
$$

Problem 11. The Power spectral density of a random process $\{X(t)\}$ is given by $S_{x x}(\omega)=\left\{\begin{array}{ll}\mid \#, & |\omega|<1 \\ 0, & \text { elsewhere }\end{array}\right.$ Find its autocorrelation function.
Solution:

$$
\begin{aligned}
& R_{X X}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) e^{i \omega} d \omega \\
& =\frac{1}{2 \pi} \int_{-1}^{1} \pi e^{i \omega \sigma} d \omega
\end{aligned}
$$

Problem 12. Define cross-Spectral density.

Solution:

The process $\{X(t)\}$ and $\{Y(t)\}$ are jointly wide-sense stationary with the crosscorrelation function $R_{X Y}(\tau)$, then the Fourier transform of $R_{X Y}(T)$ is called the cross spectral density function of $\{X(t)\}$ and $\{Y(t)\}$ denoted as $S_{X Y}(\omega)$
Thus $S_{X Y}(\omega)=\int_{-\infty}^{\infty} R_{X Y}(\tau) e^{-i \omega} d \tau$
Problem 13. Find the auto correlation function of a stationary process whose power spectral density function is given by $s(\omega)=\left\{\begin{array}{lll}\mid \omega / 2 & \text { for } & |\omega| \leq 1 \\ \mid \rho & \text { for } & |\omega|>1\end{array}\right.$.

Solution:

$R(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(\omega) e^{i \omega x} d \omega$

$=\int \omega \omega^{2} \cdot \cos \omega \pi d \omega=$

$R(\tau)=\frac{1 \mathrm{~F}-\sin \tau}{\pi}\left[\left.\frac{\left.2 \cos \tau _2 \sin \tau\right]}{\tau} \frac{\tau^{2}}{\tau^{3}} \right\rvert\,\right]$
Problem 14. Given the power spectral density : $S_{x x}(\omega)=\frac{1}{4+\omega^{2}}$, find the average power of the process.

Solution:

$R(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(\omega) e^{i \omega \pi} d \omega$
$=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\frac{1}{[4+\omega]^{2}}| | e^{i \omega x} d \omega\right.$
Hence the average power of the processes is given by

$$
\begin{aligned}
& \left.\left.E \notin X^{2}(t)\right]\right]=R(0) \\
& =\frac{1 \pi}{1} \int_{4+\omega^{2}}^{d} \\
& =\frac{1}{2 \pi} 2 \int_{\sigma^{2}+\omega^{2}}^{-\infty} \frac{d \omega}{2^{2}}
\end{aligned}
$$

Problem 15. Find the power spectral density of a random signal with autocorrelation function $e^{-\lambda \tau!!}$

Solution:

$$
\begin{aligned}
S(\omega)= & \int_{-\infty}^{\infty} R(\tau) e^{-i \omega} d \tau \\
& =\int_{-\infty}^{\infty} e^{-\lambda \tau}(\cos \omega \tau-i \sin \omega \tau) d \tau \\
& =2 \int_{0}^{\infty} e^{-\lambda \tau} \cos \omega \tau d \tau \\
& =2\left|\frac{e^{2}}{\lambda^{2}+\omega^{2}}(-\lambda \cos \omega \tau+\omega \sin \omega \tau)\right| \\
& =2\left[\begin{array}{l}
e^{-\lambda \tau} \\
\lambda^{2}+\omega^{2} \\
(-\lambda)^{2}
\end{array}\right] \frac{2 \lambda}{\lambda^{2}+\omega^{2}}
\end{aligned}
$$

PART-B

Problem 16. a). If $\{X(t)\}$ is a W.S.S. process with autocorrelation function $R_{X X}(\tau)$ and if $Y(t)=X(t+a)-X(t-a)$. Show that $R_{Y Y}(\tau)=2 R_{X X}(\tau)-R_{X X}(\tau+2 a)-R_{X X}(\tau-2 a)$.

Solution:

$$
\begin{aligned}
R_{y y}(\tau)= & E[y(t) y(t+\tau)] \\
= & E[E X(t+a)-X(t-a)] \mid \mathbb{E} X(t+\tau+a)-X(t+\tau-a)]]\} \\
= & E[X X(t+a) X(t+\tau+a)]]-E[X X(t+a) X(t+\tau-a)] \\
& -E[X X(t-a) X(t+\tau+a)]+E[X(t-a) X(t+\tau-a)] \\
= & R_{x x}(\tau)-E[X(t+a) X(t+a+\tau-2 a)] \\
& -E[X(t-a) X(t-a+\tau+2 a)]+R_{x x}(\tau) \\
= & 2 R_{x x}(\tau)-R_{x x}[\tau-2 a)-R_{x x}(\tau+2 a)
\end{aligned}
$$

b). Assume a random signal $Y(t)=X(t)+X(t-a)$ where $X(t)$ is a random signal and ' a ' is a constant. Find $R_{Y Y}(\tau)$.

Solution:

$$
\begin{aligned}
R_{Y Y}(\tau) & =E[(t) Y(t+\tau)] \\
& =E\{\mathbb{E} X(t)+X(t-a)] \mid[X(t+\tau)+X(t+\tau-a)]\}
\end{aligned}
$$

$$
\begin{aligned}
= & E[X(t) X(t+\tau)]+E E X(t) X(t+\tau-a)] \\
& +E[X(t-a) X(t+\tau)]+E[X(t-a) X(t+\tau-a)] \\
= & R_{x x}(\tau)+R_{x x}(\tau+a)+R_{x x}(\tau-a)+R_{x x}(\tau) \\
R_{x y}(\tau)= & 2 R_{x x}(\tau)+R_{x x}(\tau+a)+R_{x x}(\tau-a)
\end{aligned}
$$

Problem 17. a). If $\{X(t)\}$ and $\{Y(t)\}$ are independent WSS Processes with zero means, find the autocorrelation function of $\{Z(t)\}$, when $(i) Z(t)=a+b X(t)+C Y(t)$, (ii) $Z(t)=a X(t) Y(t)$.

Solution:

Given $E \notin X(t)]\rfloor=0 E\{Y(t)]=0$

$$
\begin{aligned}
& \square\{X(t)\} \text { and }\{Y(t)\} \text { are independent } \\
& E\{X(t) Y(t)\}=E[\mathrm{~F} X(t) Y(t)] \mid=0 \\
& \text { 0-------(2) } \\
& \text { (i). } \left.R_{Z Z}(\tau)=E \notin Z(t) Z(t+\tau)\right] \\
& =E\{[F a+b X(t)+c Y(t)][a+b X(t+\tau)+c Y(t+\tau)] \\
& =E\left\{a^{2}+a b X(t+\tau)+a c Y(t+\tau)+b a X(t)+b^{2} X(t) X(t+\tau)\right. \\
& \left.+b c X(t) Y(t+\tau)+c a Y(t)+c b Y(t) X(t+\tau)+c^{2} y(t) y(t+\tau)\right\} \\
& \left.=E\left[a^{2}\right)+a b E[X(t+\tau)]+a c E[Y(t+\tau)]+b a E X \quad(t)\right]+b E[X X(t) X(t+\tau)] \\
& \left.+b c E[X(t) y(t+\tau)]+c a E\lfloor Y(t)]+c b E[Y(t) X(t+\tau)]+c^{2} E \boldsymbol{Q} Y(t) Y(t+\tau)\right] \\
& =a^{2}+b^{2} R_{X X}(\tau)+c^{2} R,(\tau) \\
& R z Z(\mathrm{~T})=E \mathbb{Z}(t) Z(t+\tau)] \\
& =E \operatorname{ar} X(t) Y(t) a X(t+\tau) Y(t+\tau)] \\
& =E\left[a^{2} X(t) X(t+\tau) Y(t) Y(t+\tau)\right] \\
& \begin{aligned}
& \left.\left.=a^{2} E \mid X(t) X(t+\tau)\right] E X Y(t) Y(t+\tau)\right] \\
) & =a^{2} R_{X X}(\tau) R_{Y Y}(\tau)
\end{aligned}
\end{aligned}
$$

b). If $\{X(t)\}$ is a random process with mean 3 and autocorrelation $R_{x x}(\tau)=9+4 e^{-0.2 t}$! Determine the mean, variance and covariance of the random variables $Y=X(5)$ and $Z=X(8)$.

Solution:

Given $Y=X(5) \& Z=X(8), E\{[X(t)]\rceil=3$ \qquad
Mean of $Y=E[Y]=E[X X(5)]=3$
Mean of $Z=E[Z]=E[X(8)]=3$
We know that
$\left.\operatorname{Var}(Y)=E\left(Y^{2}\right)-\mathbb{E}(Y)\right]^{2}$
$E\left(Y^{2}\right)=E\left(X^{2}(5)\right)$
But E € $\left.X^{2}(t)\right]$] $=R_{X X}(0)$

$$
\begin{aligned}
& =9+4 e^{-0.2101} \\
& =9+4=13
\end{aligned}
$$

Thus $\operatorname{Var}(Y)=13-(3)^{2}=13-9=4$
$\left.\operatorname{Var}(Z)=E\left(Z^{2}\right)-\llbracket(Z)\right]^{2}$
$\left.\left.\left.E\left[Z^{2}\right]=E \nmid X^{2}(8)\right]\right] \mathrm{E} Z=X(8)\right]$

$$
\begin{aligned}
& =R_{X X}(0) \\
& =9+4=13
\end{aligned}
$$

Hence $\operatorname{Var}(Z)=13-\left(3^{2}\right)=13-9=4$

$$
\begin{aligned}
E[Y Z] & =R(5,8)=9+4 e^{-0.25} \vdash^{8} \mid\left(R \left(t_{1}^{t}, t\right.\right. \\
& \left.\left.=9+4 e^{-\left.0.2\right|_{1}-\frac{t}{2}}\right]\right) \\
& =9+4 e^{-0.6}
\end{aligned}
$$

$$
\begin{aligned}
\text { Covariance }= & \left.\left.\left.R\left(t_{1}, t_{2}\right)-E\left[\mathrm{~F} X\left(t_{1}\right)\right]\right\rfloor E \nmid X\left(t_{2}\right)\right]\right\rfloor \\
& =R(5,8)-E[5] E[8] \\
& =9+4 e^{-0.6}-(3 \times 3)=4 e^{-0.6}=2.195
\end{aligned}
$$

Problem 18. a). The autocorrelation function for a stationary process is given by $R_{x x}(\tau)=9+2 e^{-d!} \quad$ Find the mean value of the random variable $Y=\int_{0}^{2} X(t) d t$ and variance of $X(t)$.

Solution:

Given $R_{x x}(\tau)=9+2 e^{\pi l}$
Mean of $X(t)$ is given by

$$
\begin{gathered}
\bar{X}^{2}=E[\mathrm{E} X(t)]^{2}=\stackrel{L t}{|\tau| \rightarrow \infty} R_{x x}(\tau) \\
=\begin{array}{c}
L t \\
|\tau| \rightarrow \infty
\end{array}
\end{gathered}
$$

$\bar{X}^{2}=9$
$X=3$
Also $\left.\left.E \notin X^{2}(t)\right]\right\rceil=R_{X X}(0)=9+2 b^{b}=9+2=11$
$\operatorname{Var}\{X(t)\}=E\left[X^{2}(t)\right]$ 上它 $\left.(X(t))^{2}\right]$

$$
=11-3^{2}=11-9=2
$$

Mean of $Y(t)=E[Y(t)]$
$\therefore E[Y(t)]=6$
b). Find the mean and autocorrelation function of a semi random telegraph signal process.

Solution:

Semi random telegraph signal process.
If $N(t)$ represents the number of occurrences of a specified event in $(0, t)$ and $X(t)=(-1)^{\mathrm{v}(t)}$, then $\{X(t)\}$ is called the semi random signal process and $N(t)$ is a poisson process with rate λ.

By the above definition $X(t)$ can take the values $=1$ and -1 only

$$
\begin{aligned}
P[X X(t) & =1]=P E N(t) \text { is even }] \\
& =\sum_{K=e v e n} \frac{e^{-x}(\lambda t)^{k}}{K!} \\
& \left.=e^{-x}\left|1+\frac{(\lambda t)^{2}}{2}+\ldots\right|\right]
\end{aligned}
$$

$$
P[x(t)=1]=e^{-x} \cosh \lambda t
$$

$$
P[X(t)=-1]=P\left[\begin{array}{l}
\\
\\
(t) \text { is odd }]
\end{array}\right.
$$

$$
e^{-x}\left(\lambda_{t}\right)^{x}
$$

$$
=\sum_{K=o d d} \frac{1}{K!}
$$

$$
\begin{aligned}
& L_{K=o d d} K! \\
= & \left.e^{-x}\left|{ }_{\mid \lambda t}^{\mathrm{F}}+\frac{(\lambda t)^{3}}{3!}+\ldots\right|\right]
\end{aligned}
$$

$$
=e^{-\lambda} \sinh \lambda t
$$

$$
\operatorname{Mean}\{X(t)\}=\sum_{K=-1,1} K P(X(t)=K)
$$

$$
=1 \times e^{-x} \cosh \lambda t+(-1) \times e^{-x} \sinh \lambda t
$$

$$
=e^{-\lambda t}[\cosh \lambda t-\sinh \lambda t]
$$

$$
=e^{-2 \lambda t}\left[\cosh \lambda t-\sinh \lambda t=e^{-x}\right]
$$

$$
R(\tau)=E[X(t) X(t+\tau)]
$$

$$
=1 \times P[X(t) X(t+\tau)=1]+-1 \times P E X(t) X(t+\tau)=-1]
$$

$$
\begin{aligned}
& =E\left|\int_{0}^{F} X(t) d t\right| \\
& \left.\left.=\int_{0}^{2} E \notin X(t)\right]\right\rfloor d t \\
& =\int_{0} d t=3(t)_{0}^{2}=6
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=e v e n} e^{\lambda t} \frac{(\lambda \pi)^{n}}{n!}-\sum_{n<d d_{t}}-e^{-\lambda} \frac{(\lambda \pi)^{n}}{n!} \\
& =e^{-\lambda \pi} \cosh \lambda \pi-e^{\lambda \pi} \sinh \lambda \pi \\
& =e^{-\lambda \pi}[\cos h \lambda-\sinh \lambda \pi] \\
& =e^{-\lambda \pi} e^{-\lambda \pi} \\
R(\tau)= & e^{-2 \lambda \pi}
\end{aligned}
$$

Problem 19. a). Find Given the power spectral density of a continuous process as
$S_{X X}(\omega)=\frac{\omega^{2}+9}{\omega^{4}+5 \omega^{2}+4}$
find the mean square value of the process.

Solution:

We know that mean square value of $\{X(t)\}$
$=E\left\{X^{2}(t)\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) d \omega$
$=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\omega^{2}+9^{-\infty}}{\left(\omega^{4}+5 \omega^{2}+4\right)} d \omega$
$=\frac{1}{2 \pi} 2 \int_{\omega+5 \omega^{2}+4}^{\infty} \frac{\omega^{2}+9}{\omega}$
$1 \infty \quad \omega^{2}+9$
$=-\int_{\substack{\pi \\ 1 \infty}} \omega^{\omega^{4}+\omega^{2}+4 \omega^{2}+4} \omega^{2}+9 \rightarrow \infty$
$=-\frac{\pi}{\pi} \frac{\left.\partial \omega^{2}+1\right)+4\left(\omega^{2}+1\right)}{(\omega}$
i.e., $\quad E\left\{X^{2}(t)\right\}=\frac{1}{\pi} \int_{0}^{\infty} \frac{\omega^{2}+9}{\left(\omega^{2}+4\right)\left(\omega^{2}+1\right)} d \omega$
let $\quad \omega^{2}=u$
\therefore We have $\frac{\omega^{2}+9}{\left(\omega^{2}+4\right)\left(\omega^{2}+1\right)}=\frac{u+9}{(u+4)(u+1)}$
$=\frac{\frac{-4+9}{u+4}}{u+4}+\frac{\frac{-1+9}{-1+4}}{u+1}=-\frac{5}{3(u+4)}+\frac{8}{3(u+1)}$
....Partial fractions
i.e., $\frac{\omega^{2}+9}{\left(\omega^{2}+4\right)\left(\omega^{2}+1\right)}=-\frac{5}{3\left(\omega^{2}+4\right)}+\frac{8}{3\left(\omega^{2}+1\right)}$
\therefore From (1),

$$
E\left\{X^{2}(t)\right\}=\frac{1}{\pi} \int_{0}^{\infty} 3\left[\frac{-5}{\left(\omega^{2}+4\right)}+\frac{8}{\left.\left(\omega^{2}+1\right)\right]} d \omega\right.
$$

$E\left\{X^{2}(t)^{h}\right\}=\frac{11}{12}$.
b). If the $2 n$ random variables
A_{r} and B_{r} are uncorrelated with zero mean and $E\left(A_{r}^{2}\right)=E\left(B_{r}^{2}\right)=\sigma_{r}^{2}$. Find the mean and autocorrelation of the process $X(t)=\sum_{r=1}^{n} A_{r} \cos \omega, t+B_{r} \sin \omega, t$.

Solution:

Given $E(A)=E(B)=0 \& E\left(A^{2}\right)=E\left(B_{\eta}^{2}\right)=\sigma_{r}^{2}$
Mean: $E[F X(t)]]=\left[{ }_{[}^{F} \sum_{r=1} A_{r} \cos \omega, t+B_{r} \sin \omega, t \mid\right]$

$$
\left.=\sum_{r=1}^{n} E\left(A_{r}\right) \cos \omega_{t} t+E\left(B_{r}\right) \sin \omega_{t} t\right]
$$

$$
E \notin X(t)]\rfloor=\quad E\left(A_{r}\right)=E\left(B_{r}\right)=0
$$

0
Autocorrelation function:

$$
\begin{aligned}
R(\tau)= & E\left[X X \sum_{[t}^{t} X(t+\tau)\right] \\
& =E \sum_{r}^{n}\left(A_{r} \cos \omega_{r} t+B_{r} \sin \omega_{t} t\right)\left(A_{s} \cos \omega_{3}(t+\tau)+B_{s} \sin \omega_{3}(t+\tau)\right)
\end{aligned}
$$

Given $2 n$ rātiolom variables A_{r} and B_{r} are uncorrelated $E\left[A_{r} A_{s}\right], E\left[A_{r} B_{s}\right], E\left[B_{r} A_{s}\right], E\left[B_{r}, B_{s}\right]$ are all zero for $r \neq s$

$$
\begin{aligned}
& =\sum_{r=1} E\left(A_{r}^{2}\right) \cos \omega t_{r} \cos \omega t(t+\tau)+E\left(B^{2}\right) \sin \omega t \sin \omega(t+\tau) \\
& =\sum_{r=1}^{n} \sigma \omega^{2} \omega s \omega_{r}(t-t-\tau) \\
& =\sum_{r=1}^{n} \sigma c^{2} \rho s \omega_{r}(-\tau) \\
R(\tau)= & \sum_{r=1}^{n} \sigma^{2} \cos \omega \tau_{r}
\end{aligned}
$$

Problem 20. a). If $\{X(t)\}$ is a WSS process with autocorrelation $R(\tau)=A e^{-\alpha \tau}$, । determine the second - order moment of the random variable $X(8)-X(5)$.

Solution:

UNIT - V LINEAR SYSTEMS WITH RANDOM INPUTS

PART - A

Problem 1. If the system function of a convolution type of linear system is given by
$h(t)=\left\{\begin{array}{ll}1 z_{a} & \text { for }|t| \leq a \\ 10 & \text { for }|t|>a\end{array}\right.$ find the relation between power spectrum density function of the input and output processes.
Solution: ${ }_{a}$
$H(\omega)=\int_{-a}^{a} h(t) e^{-i \omega^{t}} d t=\frac{\sin a \omega}{a \omega}$
We know that $S_{Y Y}(\omega)=\left.H(\omega)\right|^{2} S_{X X}(\omega)$
$\Rightarrow S_{Y Y}(\omega)=\frac{\sin ^{2} a \omega}{a^{2} \omega^{2}} S_{X X}(\omega)$.
Problem 2. Give an example of cross-spectral density.

Solution:

The cross-spectral density of two processes $X(t)$ and $Y(t)$ is given by $S_{X Y}(\omega)= \begin{cases}\| p+i q \omega & \text { if }|\omega|<1 \\ \rho, & \text { otherwise }\end{cases}$
Problem 3. If a random process $X(t)$ is defined as $X(t)=\left\{\begin{array}{ll}A, & 0 \leq t \leq 1 \\ 0, & \text { otherwise }\end{array}\right.$, where A is a random variable uniformly distributed from $-\theta$ to θ. Prove that autocorrelation function of $X(t)$ is $\frac{\theta^{2}}{3}$.

Solution:

$$
\begin{aligned}
R_{X X}(t, t+\tau) & =E[X(t) \cdot X(t+\tau)] \\
& \left.\left.\left.=E\left[A^{2}\right]\right] \quad E X(t) \text { is constan} t\right]\right]
\end{aligned}
$$

But A is uniform in $(-\theta, \theta)$
$\therefore f(\theta)=\frac{1}{2 \theta}-\theta<a<\theta$

$$
\begin{aligned}
& \therefore R_{X X}(t, t+\tau)=\int_{\theta}^{\theta} a^{2} f(a) d a \\
& \left.\quad=\int_{\theta}^{\theta} a^{2} \cdot \frac{1}{2 \theta} d \theta=\frac{1}{2 \theta}\left[\overline{\sigma^{3}}\right]^{\theta}\right]_{\theta}^{\theta}
\end{aligned}
$$

Unit.5. Linear System with Random Inputs

$$
\left.=\frac{1}{{ }^{6 \theta} t} \theta^{3}-(\theta)^{3}\right]=1 \quad \frac{1}{6} \cdot 2^{\theta^{3}=} \frac{\theta^{2}}{3}
$$

Problem 4. Check whether $\frac{\theta}{1+b \tau^{2}}$ is a valid autocorrelation function of a random process.
Solution: Given $R(\tau)=\frac{1}{1+9 \tau^{2}}$
$\therefore R(-\tau)=\frac{1}{1+9\left(-\tau^{2}\right)}=\frac{1}{1+9 \tau^{2}}=R(\tau)$
$\therefore R(\tau)$ is an even function. So it can be the autocorrelation function of a random process.
Problem 5. Find the mean square value of the process $\mathrm{X}(\mathrm{t})$ whose power density spectrum is $\frac{4}{4+\omega^{2}}$.

Solution:

Given $S_{X X}(\omega)=\frac{4}{4+\omega^{2}}$
Then $R_{X X}(\tau)=\underset{2 \pi}{1} \oint_{-\infty} S_{X X}(\omega) e_{i \omega} d \omega$
Mean square value of the process is $\left.\left.E \notin X^{2}(t)\right]\right\rceil=R_{X X}(0)$
$=\frac{1}{2 \pi} \int_{0}^{\infty} S_{X X}(\omega) d \omega$
$=\frac{1 \pi}{\pi} \oint_{(\omega)}^{4}$

$\left.=-\frac{\pi}{2}\right]_{\pi}\left|\tan ^{-1}-\right|_{0}=-\left(\tan ^{-1} \infty-\tan ^{-1} 0\right)$
$=-{ }_{-}^{2} \cdot=1$
Problem 6. A Circuit has an impulse response given by $h(t)=\left\{\begin{array}{l}\mathbb{R}_{T}^{1} ; 0 \leq t \leq T \\ T_{0, \text { elsewhere }}\end{array}\right.$ find the relation between the power spectral density functions of the input and output processes.
Solution:

$$
H(\omega)=\int_{0}^{T} h(t) e^{-i \omega} d t
$$

$$
\begin{aligned}
& =\int_{0}^{T} \frac{1}{T} e^{-i \omega t} d t \\
& \left.\left.=\frac{\left.1-\mathrm{Fe}^{-i \omega}\right]^{T}}{T} \right\rvert\,-i \omega\right]_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(1-e^{-i \omega T}\right)}{T i \omega} \\
& S_{Y Y}(\omega)=|H(\omega)|^{2} S_{X X}(\omega) \\
& =\frac{\left(1-e^{-i \omega T}\right)^{2}}{\omega^{2} T^{2}} S_{X X}(\omega)
\end{aligned}
$$

Problem 7. Describe a linear system.

Solution:

Given two stochastic process $\left\{X_{1}(t)\right\}$ and $\left\{X_{2}(t)\right\}$, we say that L is a linear transformation if

$$
L\left[a_{1} X_{1}(t)+a_{2} X_{2}(t)\right]=a_{1} L\left[X_{1}(t)\right]+a_{2} L E X_{2}(t
$$

Problem 8. Given an example of a linear system.

Solution:

Consider the system f with output $t x(t)$ for an input signal
i.e. $y(t)=f[\mathrm{FX}(t)]\rfloor=t x(t)$

Then the system is linear.
For any two inputs $x_{1}(t), x_{2}(t)$ the outputs are $t x_{1}(t)$ and $t x_{2}(t)$ Now $f\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right]=t \mid\left\{a_{1} x_{1}(t)+a_{2} x_{2}(t)\right]$
$=a_{1} t x_{1}(t)+a_{2} t x_{2}(t)$
$=a_{1} f\left(x_{1}(t)\right)+a_{2} f\left(x_{2}(t)\right)$
\therefore the system is linear.
Problem 9. Define a system, when it is called a linear system?
Solution:
Mathematically, a system is a functional relation between input $x(t)$ and output $y(t)$.
Symbolically, $y(t)=f[E x(t)]\rfloor,-\infty<t<\infty$..
The system is said to be linear if for any two inputs $x_{1}(t)$ and $x_{2}(t)$ and constants $a_{1}, a_{2}, \quad f\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right]=a_{1} f\left[x_{1}(t)\right]+a_{2} f\left[x_{2}(t)\right]$.
Problem 10. State the properties of a linear system.
Solution:
Let $X_{1}(t)$ and $X_{2}(t)$ be any two processes and a and b be two constants.

If L is a linear filter then
$L\left\lfloor a_{1} x_{1}(t)+a_{2} x_{2}(t)\right]=a_{1} L\left\{\left[x_{1}(t)\right]+a_{2} L\left\{x_{2}(t)\right]\right.$.
Problem 11. Describe a linear system with an random input.

Solution:

We assume that $X(t)$ represents a sample function of a random process $\{X(t)\}$, the system produces an output or response $Y(t)$ and the ensemble of the output functions forms a random process $\{Y(t)\}$. The process $\{Y(t)\}$ can be considered as the output of the system or transformation f with $\quad\{X(t)\}$ as the input the system is completely specified by the operator f.
Problem 12. State the convolution form of the output of linear time invariant system. Solution:
If $X(t)$ is the input and $h(t)$ be the system weighting function and $Y(t)$ is the output,
then $Y(t)=h(t)^{*} X(t)=\int_{-\infty} h(u) X(t-u) d u$
Problem 13. Write a note on noise in communication system.

Solution:

The term noise is used to designate unwanted signals that tend to disturb the transmission and processing of signal in communication systems and over which we have incomplete control.

Problem 14. Define band-limited white noise.

Solution:

Noise with non-zero and constant density over a finite frequency band is called bandlimit white noise i.e.,
$S_{N N}(\omega)=\left\lvert\, \begin{array}{ll}\frac{N_{0}}{2}, & \left.\right|^{\omega \leq \omega} \\ \rho & \text {, otherwise }\end{array}\right.$
Problem 15. Define (a) Thermal Noise (b) White Noise. Solution:
(a) Thermal Noise: This noise is due to the random motion of free electrons in a conducting medium such as a resistor.
(or)

Thermal noise is the name given to the electrical noise arising from the random motion of electrons in a conductor.
(b)White Noise(or) Gaussian Noise: The noise analysis of communication systems is based on an idealized form of noise called White Noise.

PART-B

Problem 16. A random process $X(t)$ is the input to a linear system whose impulse response is $h(t)=2 e^{-t}, t \geq 0$. If the autocorrelation function of the process is $R_{X X}(\tau)=e_{2}^{-\tau} I$, find the power spectral density of the output process $Y(t)$.

Solution:

Given $X(t)$ is the input process to the linear system with impulse response $h(t)=2 e^{-t}, t \geq 0$
So the transfer function of the linear system is its Fourier transform

$$
\begin{aligned}
& H(\omega)=\int_{-\infty}^{\infty} h(t) e^{-i \omega} d t \\
& \left.=\int_{\infty} 2 e^{-t} e^{-i \omega t} d t \quad E 2 e^{-t}, t \geq 0\right] \\
& =2 \int_{0}^{\infty} e^{-(1+i \omega) t} d t \\
& =2\left[\frac{e^{-(1+i \omega) t}}{-(1+i \omega)}\right]_{0}^{\infty} \\
& \begin{array}{l}
=\frac{-2}{1+\dot{j} \omega}[0-1]=\frac{2}{1+i \omega} \\
R_{X X}(\tau)=e^{-\tau}
\end{array} \\
& \text { Given } R_{X X} \begin{array}{l}
1+j \omega \\
(\tau)
\end{array}=e_{2}^{-\tau} I I
\end{aligned}
$$

\therefore the spectral density of the input is

$$
\left.\begin{array}{rl}
S_{X X}(\omega) & =\int_{-\infty}^{\infty} R_{X X}(\tau) e^{-i \omega \tau} d t \\
& =\int_{-\infty}^{\infty} e^{-2 \tau} b+i \omega x \\
0
\end{array}\right] \tau=-\int_{0}^{\infty} e^{2 \tau} e^{-i \omega \tau} d \tau+\int_{0}^{-2 \tau} e^{-i \omega \tau} d \tau .
$$

$$
\begin{aligned}
& =\left[\frac{\left.F e^{(2-i \omega) t}\right]^{0}}{2-i \omega}\right]_{-\infty}+\left[\frac{e^{-(2-i \omega) \tau}}{-(2+i \omega)}\right]_{0}^{\infty} \\
& =\frac{1}{2-i \omega}[1-0]-\frac{1}{2+i \omega}[0-1] \\
& =\frac{1}{2-i \omega}+\frac{1}{2+i \omega} \\
& =\frac{2+i \omega+2-i \omega}{(2+i \omega)(2-i \omega)}=\frac{4}{4+\omega^{2}}
\end{aligned}
$$

We know the power spectral density of the output process $Y(t)$ is given by

$$
\begin{aligned}
S_{Y Y}(\omega) & =|H(\omega)|^{2} S_{X X}(\omega) \\
& =\left|\frac{2}{1+i \omega}\right|^{2} \frac{4}{4+\omega^{2}} \\
& =\frac{4}{\left(1+\omega^{2}\right)} \frac{4}{4+\omega^{2}} \\
& =\frac{16}{\left(1+\omega^{2}\right)\left(4+\omega^{2}\right)}
\end{aligned}
$$

Problem 17. If $Y(t)=A \cos \left(\omega_{8} t+\theta\right)+N(t), \quad$ where A is a constant, θ is a random variable with uniform distribution in $(-\pi, \pi)$ and $N(t)$ is a band-limited Gaussian white noise with a power spectral density $S_{N N}(\omega)=\left\{\begin{array}{lll}\frac{N_{0}}{2}, & \text { for } & \omega-\omega<\omega \\ \left.\right|_{0,} \text { elsewhere } & 0 l^{B} \text {. Find the power }\end{array}\right.$ spectral density of $Y(t)$. Assume that $N(t)$ and θ are independent.

Solution:

Given $Y(t)=A \cos \left(\omega_{\Delta} t+\theta\right)+N(t)$
$N(t)$ is a band-limited Gaussian white noise process with power spectral density $S_{N N}(\omega)=\frac{N_{0}}{2}\left(p-\omega{ }_{0} \mid<\omega_{B} \quad\right.$ ie. $\omega_{0}-\omega_{B}<\omega<\omega_{0}+\omega_{B}$
Required $S_{Y Y}(\omega)=\int_{-\infty}^{\infty} R_{Y Y}(\tau) e^{-i \omega \tau} d \tau$
Now $R_{Y Y}(\tau)=E[Y(t) Y(t+\tau)]$

$$
=E\left\{\left[A \cos \left(\omega_{8} t+\theta\right)+N(t)\right]\left[A \cos \left(\omega_{8} t+\omega_{\theta} \tau+\theta\right)+N(t+\tau)\right]\right\}
$$

$$
\begin{aligned}
& =E\left\{\| A^{2} \cos (\omega t+\theta) \cos (\underset{0}{\omega} t+\underset{0}{t+\theta})+N(t) N(t+\tau)+A \cos \left(\omega t+{ }_{0}^{(\omega)}\right) N(t+\tau) \mid\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+A E\left[\cos \left(\omega_{8} t+\theta\right)\right] E E N(t+\tau)\right] \\
& \left.+A E\left[\cos \left(\omega_{g} t+\omega_{\theta}+\theta\right)\right] E E N(t)\right] \quad[\theta \text { and } N(t) \text { are independent }] \\
& \left.=\frac{A^{2}}{2}\left\{E \operatorname{Eos}\left(2 \omega_{g} t+\omega_{g} t+2 \theta\right)\right]+\cos \omega_{\partial} \tau\right\}+R_{N N}(\tau) \\
& \left.\left.+A E\left[\cos \left(\omega_{\partial} t+\theta\right)\right] E E N(t+\tau)\right] \quad+A E\left[\cos \left(\omega_{8} t+\omega_{8} \tau+2 \theta\right)\right] E[N(t)]\right\}
\end{aligned}
$$

Since θ is uniformly distributed in $(-\pi, \pi)$ the pdf of θ is $\quad f(\theta)=\frac{1}{2 \pi}-\pi<\theta<\pi$

$$
\begin{aligned}
& \therefore E\left[\cos \left(\omega_{g} t+\theta\right)\right]=\int_{-\pi}^{\pi} \cos \left(\omega_{g} t+\theta\right) f(\theta) d \theta \\
& =\int_{-\pi}^{\pi}\left[\cos \omega_{g} t \cdot \cos \theta-\sin \omega_{g} t \cdot \sin \theta\right] \quad \frac{1}{2 \pi} d \theta \\
& =\frac{1}{2 \pi}\left[\cos \omega_{g} t \int \cos \theta d \theta-\sin \omega_{g} t \int \sin \bar{\theta} d \theta \mid\right] \\
& =\frac{1}{2 \pi}\left[\cos \omega t[\sin \theta]^{-\pi}-\sin \omega t .0\right]_{-\pi}^{\pi}=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{1}{2 \pi} \int^{\pi} \int \operatorname{tcos}\left(2 \omega_{\partial} t+\omega_{\partial} \tau\right) \cos 2 \theta-\sin \left(2 \omega_{g} t+\omega_{\partial} \tau\right) \sin 2 \theta\right] d \theta \\
& =\frac{1}{2 \pi}\left\{\int^{\pi} \cos \left(2 \omega_{\partial} t+\omega_{\Delta} \tau\right) \int \cos 2 \theta d \theta-\sin \left(2 \omega_{\partial} t+\omega_{\Delta} \tau\right) \int \sin 2 \ddot{\theta} d \theta\right\} \quad \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore R_{Y Y}(\tau)=\frac{A^{2}}{2} \cos \omega_{8} \tau+R_{N N}(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{A^{2}}{2} \int^{2} \cos \omega \bar{\omega} e^{-i \omega \tau} d \tau+\int R_{N N}(\tau) e_{-i \omega \tau} d \tau \\
& =\frac{\pi A^{2}}{2}\left\{\delta\left(\omega-\omega{ }_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right\}+S_{N N}(\omega)
\end{aligned}
$$

$$
=\frac{\pi A^{2}}{2}\{\delta(\omega-\omega)+\delta(\omega+\omega)\}+-\underset{0}{N_{0}}, \omega \underset{0}{\omega} \underset{0}{\omega} \underset{{ }_{0}}{\omega}\left\langle\omega+\omega_{0} \quad{ }_{B}\right.
$$

Problem 18. Consider a Gaussian white noise of zero mean and power spectral density $\frac{N_{0}}{2}$ applied to a low pass RC filter whose transfer function is $H(f)=\frac{1}{1+i 2 \pi f R C}$. Find the autocorrelation function.

Solution:

The transfer function of a RC circuit is given. We know if $X(t)$ is the input process and $Y(t)$ is the output process of a linear system, then the relation between their spectral densities is $S_{Y Y}(\omega)=\left.H_{\mid}^{H}(\omega)\right|_{x x} \quad(\omega)$
The given transfer function is in terms of frequency f

$$
\begin{aligned}
& S_{Y Y}(f)=|H(f)|^{2} S_{X X}(f) \\
& S_{Y Y}(f)=\frac{1 \quad N_{0}}{1+4 \pi^{2} f^{2} R^{2} C^{2} 2} \\
& \therefore R_{Y Y}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{Y Y}(\omega) e^{i \sigma \sigma} d \omega
\end{aligned}
$$

$$
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e_{2}^{i 2 \pi}{ }_{2}{ }_{2}{ }_{2}^{2} N_{0}}{1+4 \pi f^{2} C^{2}} d f
$$

$$
\left.=\frac{N_{0}}{2 \pi} \int_{-\infty}^{\infty} 1+4 \pi \pi^{2} R^{2} C^{2} \frac{e^{i(2 \pi)}{ }^{2}{ }_{h}}{\prod_{4 \pi^{2} R^{2} C^{2}}}+f^{2}\right) d f
$$

$$
=\frac{N_{3} \underline{0}_{2}}{16 \pi R C} \int_{-\infty}^{\infty}\left(\frac{\left.e^{i(2 \pi)}\right)_{2}^{2}}{\frac{1}{2 \pi}}\right)^{2}+f^{2} d f
$$

We know from contour integration $\int_{-\infty}^{\infty} \frac{e^{i m x}}{a^{2}+x^{2}} d x=\frac{\pi}{a} e^{-m a}$

$$
\begin{aligned}
\therefore R_{n 1}(\tau) & =\frac{N_{0}}{16 \pi^{3} R^{2} C^{2} \frac{\pi}{2}} e^{-\frac{\tau}{2 \pi R C}} \\
& =\frac{N_{0}}{16 \pi^{3} R^{2} C^{2}} 2 \pi^{\frac{P}{P} R C} e^{-\frac{\tau}{2 \pi R C}} \\
& =\frac{N_{0}}{8 \pi} \frac{e^{-\frac{\tau}{2 \pi}} 2}{2 \pi R C}
\end{aligned}
$$

Problem 19. A wide-sepse stationary noise process $\mathrm{N}(\mathrm{t})$ has an autocorrelation function

Solution:

Given the autocorrelation function of the noise process $N(t)$ is $R_{N N}(\tau)=P e^{-3 t}$!

Problem 20. A wide sense stationary process $\mathrm{X}(\mathrm{t})$ is the input to a linear system with impulse response $h(t)=2 e^{-7 t}, t \geq 0$. If the autocorrelation function of $\mathrm{X}(\mathrm{t})$ is $R_{X X}(\tau)=e_{4}^{-\tau}$ find the power spectral density of the output process $\mathrm{Y}(\mathrm{t})$.

Solution:

Given $\mathrm{X}(\mathrm{t})$ is a WSS process which is the input to a linear system and so the output process $\mathrm{Y}(\mathrm{t})$ is also a WSS process (by property autocorrelation function)
Further the spectral relationship is $S_{Y Y}(\omega)=H(\omega)^{2} S_{X X}(\omega)$
Where $S_{X X}(\omega)=$ Fourier transform of $R_{X X}(\tau)$

$$
\begin{aligned}
& =\int_{-\infty} R_{X X}(\tau) e^{-i \omega x} d \tau \\
& =\int_{\substack{-\infty \\
0}}^{\infty} e^{-4 \|} d^{-i \omega \tau} d \tau \\
& 0
\end{aligned}
$$

$$
=\int_{0} e^{4 \pi} e^{-i \omega \tau} d \tau+\int_{0}^{-4 \tau} e^{-i \omega \tau} d \tau
$$

$$
=\int_{-\infty}^{0} e^{\tau(4-i \omega)} d \tau+\int_{0}^{-\infty} e^{-\tau(4+i \omega)} d \tau
$$

$$
\begin{aligned}
& \therefore S_{N N} \quad(\omega)=\int_{-\infty}^{\infty} R_{X X}(\tau) e^{-i \omega x} d \tau \\
& =\int_{-\infty}^{\infty} P e^{-3 t d d^{-i \omega \tau} d \tau}
\end{aligned}
$$

$\Rightarrow R_{X Y}(\tau)=R_{X X}(\tau) * h(\tau)$
(b). Now $R_{Y X}(\tau)=R_{X Y}(-\tau)$

$$
\begin{aligned}
& =R_{X Y}(-\tau) * h(-\tau) \quad[\text { from }(i)] \\
& =R_{X X}(\tau) * h(-\tau) \quad\left[\text { Since } R_{X X}(\tau) \text { is an even function of } \tau\right]
\end{aligned}
$$

(c). $R_{Y Y}(t, t-\tau)=E\left[\begin{array}{l}(t) Y(t-\tau)]\end{array}\right.$

$$
\begin{aligned}
& =E\left[\int_{-\infty}^{\infty} h(u) X(t-u) d u Y(t-\tau) \mid\right. \\
& =E\left[\int_{-\infty}^{\infty} X X(t-u) Y(t-\tau) h(u) d u\right]_{-\infty}^{\infty} \\
& =\int_{-\infty}^{\infty} E[X(t-u) Y(t-\tau)] h(u) d u=\int_{-\infty}^{\infty} R_{X Y}(\tau-u) h(u) d u
\end{aligned}
$$

It is a function of τ only and it is true for any τ.
$\therefore R_{Y Y}(\tau)=R_{X Y}(\tau) * h(\tau)$
Problem 33. Prove that the mean of the output of a linear system is given by $\mu_{Y}=H(0) \mu_{X}$, where $X(t)$ is WSS.

Solution:

We know that the input $X(t)$, output $Y(t)$ relationship of a linear system can expressed as a convolution $Y(t)=h(t) * X(t)$

$$
=\int_{-\infty}^{\infty} h(u)(t-u) d u
$$

Where $h(t)$ is the unit impulse response of the system.
\therefore the mean of the output is
$\left.E \nmid Y(t)]=E\left|\int_{-\infty}^{F_{-\infty}^{p}} h(u) X(t-u) d u\right| \underset{]}{=} \int_{-\infty}^{\infty} h(u) E \in X(t-u)\right] \mid d u$
Since $\mathrm{X}(\mathrm{t})$ is WSS, $E\{X(t)\rfloor]=\mu_{x}$ is a constant for any t .
$E \notin X(t-u)]\rfloor=\mu_{x}$
$\therefore E[(t)]=\int_{-\infty}^{\infty} h(u) \mu_{x} d u=\mu_{x} \int h(u) d u$
We know $H(\omega)$ is the Fourier transform of $h(t)$.
i.e. $H(\omega)=\int_{-\infty} h(t) d t$
put $\omega=0 \therefore H(0)=\int_{-\infty}^{\infty} h(t) d t=\int_{-\infty}^{\infty} h(u) d u$
$\therefore E Z(t)]=\mu_{x} H(0)$.

